
GRACE:
An Autonomous Robot for the AAAI Robot Challenge

Reid Simmons, Dani Goldberg, Adam Goode, Michael Montemerlo,

Nicholas Roy, Brennan Sellner, Chris Urmson
Carnegie Mellon University

Alan Schultz, Myriam Abramson, William Adams, Amin Atrash,
Magda Bugajska, Michael Coblenz, Matt MacMahon, Dennis Perzanowski

Naval Research Laboratory

Ian Horswill, Robert Zubek
Northwestern University

David Kortenkamp, Bryn Wolfe, Tod Milam
Metr ica, Inc.

Bruce Maxwell
Swarthmore College

Keywords: Robotics, Robot Competition, Localization and Mapping, Human-Robot Interaction

Abstract

In an attempt to solve as much of the AAAI Robot
Challenge as possible, five research institutions
representing academia, industry and government,
integrated their research in a single robot named
GRACE. This paper describes this first year effort by the
GRACE team, and describes not only the various
techniques each participant brought to GRACE, but also
the difficult integration effort itself.

1. Introduction

The AAAI Robot Challenge was established four years ago
as a “grand challenge” for mobile robots. The main
objectives of the Challenge are to (a) provide a task that
will demonstrate a high level of intelligence and autonomy
for robots acting in a natural, peopled, dynamic
environment, (b) stimulate state-of-the-art robotics
research to address this task, and (c) use robot
demonstrations to educate the public about the exciting and
difficult challenges of robotics research. The Challenge
was designed as a problem that would probably need a
decade to achieve adequately. When the challenge was
designed, it was anticipated that no single research
institution would have adequate resources to meet the
Challenge on its own.

The Challenge task is for a robot to attend the AAAI
National Conference on Artificial Intelligence as a

participant – the robot must find the registration booth and
register, interacting with people as needed, then with a map
in hand, find its way to a location in time to give a
technical talk on itself. Ideally, the robot should be given
no more information than any other participant arriving in
a new city to attend a major technical conference. In
particular, that means that the robot should not know the
layout of the convention center beforehand, and the
environment should not be modified. Practically, however,
the organizers understand that compromises and flexibility
will be necessary in order to get current state-of-the-art
robots to achieve the task.

There are a number of important technologies that are
needed to meet the Challenge. These include localization
in a dynamic environment, safe navigation in the presence
of moving people, path planning, dynamic replanning,
visual tracking of people, signs, and landmarks, gesture
and face recognition, speech recognition and natural
language understanding, speech generation, knowledge
representation, and social interaction with people. While
researchers have worked on all of these areas, to a greater
or lesser extent, they all need further work to be robust in
the environment that the Challenge specifies. In addition,
a major challenge is the integration of these technologies.

In August 2001, several of the authors agreed to join
efforts to attempt the Challenge in its entirety. We had all
been working on technologies related to the Challenge, and
felt that by pooling our efforts we could do reasonably
well. In addition, we believed that the type of

collaborative work that was needed to pull this off would
help advance robotics. We realized that integrating
hardware and software from five institutions would be very
difficult. Our first year goal, therefore, was to create an
architecture and infrastructure that would enable us to
integrate our existing software into a system that could do
a credible job with the Challenge task. We all agreed that
this would be a multi-year effort, and that in subsequent
years we would build on this year’s robot system.

In email and meetings during the winter of 2002, we
formulated the basic approach and architecture. We
decided that there were several possible approaches: 1) we
could bring our own robots and each do part of the task,
“handing off” from one to another, 2) we could use a
common hardware platform, but use our own, existing
software, or 3) we could do a full-blown hardware and
software integration. We quickly agreed to try for option
3, but that option 2 would be a good fallback position. We
spent the spring of 2002 converting existing software to
run on the common hardware platform (see Section 2) and
common integration architecture (see Section 3). In the
end, we achieved somewhere between options 2 and 3,
with the robot successfully performing most of the major
subtasks with little human intervention (see Section 4). In
July 2002, we traveled to the National Conference on
Artificial Intelligence at the Shaw Convention Centre in
Edmonton, Alberta to take part in the Challenge.

2. Robot Hardware

GRACE (Graduate Robot Attending ConferencE) is built
on top of a B21 Mobile Robot built by RWI. GRACE has
an expressive computer-animated face projected on a 15”
flat-panel LCD screen, as well as a large array of sensors
(see Figure 1). The sensors that come standard with the
B21 include touch, infrared, and sonar sensors. Near the
base is a SICK scanning laser range finder that provides a
180-degree field of view.

Figure 1. The robot GRACE

At one of our first meetings, we discussed the various
hardware each team would need to integrate into the CMU
platform. GRACE has several cameras, including a stereo
camera head on a pan-tilt unit built by Metrica TRACLabs
and a single color camera with pan-tilt-zoom capability,
built by Canon. GRACE can speak using a high-quality
speech generation software (Festival), and receive speech
responses using a wireless microphone headset (a Shure
TC Computer Wireless transmitter/receiver pair).

GRACE runs all software on board. Two 500 MHz
processors, running Linux, run most of the autonomy
software. A Sony Vaio Picturebook laptop, running
Windows, runs the speech recognition and natural
language understanding software. In addition, there is a
separate processor for the Metrica stereo head, and a
Linksys wireless access point to connect the robot to the
outside world (for debugging, monitoring, and for giving
the talk).

3. Software Architecture

One of the more difficult parts of the Challenge for us was
determining how to integrate a vast amount of software
that had been developed by the participating institutions,
mostly on different hardware platforms. Early on, we
decided to integrate everything onto a common hardware
platform as described above, with different groups
providing software “services” that would interface to
various pieces of hardware. The idea was that the
“services” would abstract away details of the actual
hardware platform, making subsequent development
easier. Development of interfaces between modules
occupied the bulk of our initial work. Each team needed to
define the inputs and outputs of their modules, and work
out details of how the various modules would interact. In
particular, Carnegie Mellon University (CMU) provided
interfaces to the robot base (motion and localization),
speech generation, and computer-animated face, the Naval
Research Laboratory (NRL) provided speech recognition
and natural language understanding interfaces, Swarthmore
provided vision processing code and control over the
Canon pan/tilt/zoom camera, and Metrica provided stereo
vision and control over their pan/tilt head. In addition,
CMU provided a simple graphical simulator so that
programs could be tested remotely, in advance of
integration on the actual robot platform.

Software for the various subtasks was then built on top of
these services. While the services, for the most part, were
task-independent, the software that ran the various tasks
was a mixture of task-independent and task-dependent
code. In particular, NRL was responsible for the part of
the Challenge from when the robot entered the conference
center until it was near the registration booth, CMU was
responsible for elevator riding, getting in line at the
registration booth (using Swarthmore’s vision system),

registering for the conference, and navigating to the lecture
area, and Northwestern was responsible for having
GRACE give its talk. Figure 2 presents a high-level view
of the software architecture and development
responsibilities. Section 4 presents details of the task-level
software.

To facilitate distributed development, and to simplify
testing and debugging, the GRACE system was designed
as a set of independent programs that communicated via
message passing. The IPC package
(www.cs.cmu.edu/~IPC) was chosen for (nearly all)
communications, because of its expressiveness, ease of
use, and familiarity by some of the teams (both CMU and
Metrica have used IPC in the past). As much as possible,
all software was to be written in C or C++ (using the GCC
2.96 compiler), running under Red Hat Linux 7.2.
Exceptions included the use of a Windows laptop to run
ViaVoice (www.ibm.com/software/speech), the use of
Allegro Common Lisp for NRL’s Nautilus natural
language understanding system, and the use of Swig and
Python for the elevator riding code. In addition, OpenGL,
Perl and Festival (www.cstr.ed.ac.uk/projects/festival)
were used for the computer-animated face and speech
generation.

Finally, the computer-animated face and several of the
task-level programs were written using the Task
Description Language (TDL). TDL is an extension of C++
that contains explicit syntax to support hierarchical task
decomposition, task synchronization, execution
monitoring, and exception handling (see
www.cs.cmu.edu/~TDL and [Simmons & Apfelbaum,

1998]). A compiler translates TDL code into pure C++
code that includes calls to a domain-independent Task-
Control Management library (TCM). The translated code
can then be compiled using standard C++ compilers and
linked with other software. The idea is to enable complex
task-level control constructs to be described easily,
enabling developers to focus more on the domain-
dependent aspects of their programs.

4. Doing the Challenge Task

As mentioned before, the Challenge is to have an
autonomous mobile robot attend the National Conference
on Artificial Intelligence. More specifically, the Challenge
rules (www.cs.utexas.edu/users/kuipers/AAAI-robot-
challenge.html) are to have the robot perform the following
subtasks:

1. Start at the front door of the conference center;
2. Navigate to the registration desk (ideally by

locating signs and/or asking people and/or
following people – at this point, the robot does not
have a map of the building);

3. Register: stand in line if necessary, have the robot
identify itself, receive registration material, a map
of the conference center, and a room number and
time for its talk;

4. Interact with other conference attendees (ideally
recognize participants by reading nametags or
recognizing faces and schmooze – striking up
brief personal conversations);

Figure 2. GRACE Software Architecture Diagram

5. If requested, perform volunteer tasks as time
permits, such as “guarding” a room or delivering
an object to another room;

6. Get to the conference room on time, using map
received in step 3. This may involve riding an
escalator or elevator.

7. Make a two-minute presentation about its own
technology, and answer questions.

For our first year of the Challenge, we decided to do all of
the subtasks except #4 (schmoozing) #5 (volunteer duties),
and having the robot itself answer questions from the
audience. In addition, the human interaction in #2 was
limited to interaction with one person, a student who
worked with the team that summer. In future years, we
will expand the scope to include all subtasks and enable
arbitrary conference participants to interact with the robot.

The next sections describe in more detail the major
subsystems for each of the Challenge tasks.

4.1 Getting to the Registration Area

GRACE must start at the entrance to the conference center
and find then the registration area by interacting with
people. Remember that GRACE does not have a map until
she reaches the registration desk. This part of the challenge
is meant to demonstrate robot interaction with people.

We endowed GRACE with the capability to interact with
people using both speech and natural gestures, in particular
to allow GACE to ask for, understand, and follow
directions. Using TDL (described in Section 3), we created
a finite state machine that allowed GRACE to maintain
multiple goals such as using an elevator to get to a
particular floor and following directions to find the
elevator.

We used an off-the-shelf speech recognition system, IBM’s
ViaVoice, to convert from spoken utterances to text
strings. The text strings were then parsed and interpreted
using Nautilus, NRL’s in-house natural language
understanding system, [Perzanowski, et. al., 2002;
Perzanowski, et. al., 2001; Perzanowski, et. al., 1998;
Wauchope, 1994]. The output of this component is a
logical form similar to standard predicate logic. This
representation is then mapped to a message, or a series of
messages, which is then sent to other modules through an
IPC interface. The mapping code was written in TDL and
it, and the IPC interface, was developed specifically for the
Challenge.

The a priori top-level goal is to find the registration desk.
Additional goals are created as GRACE interactions with
people to determine the directions to the registration desk
and intermediate locations on the way to the registration
desk. To achieve a goal, we interleave linguistic and visual
information with direction execution (see Figure 3). If

there are no directions to be followed, GRACE performs a
random walk until a human is detected (for the Challenge
this past year, human detection was done using a laser
scanner; in future years, we will incorporate vision-based
detection of people). GRACE then engages the human in a
conversation to obtain directions to the destination in
question. Simple commands, such as “ turn left” and “go
forward five meters,” as well as higher level instructions,
such as “ take the elevator” and “ turn left next to the
elevator” are acceptable (note that in the Shaw Convention
Centre, one needed to take an elevator down two flights
from the entrance in order to get to the registration area).
In addition, GRACE can ask questions such as “am I at the
registration desk?” and “ is this the elevator?” The task is
completed once the destination is reached, as determined
by an explicit human confirmation or perception of the
goal.

Besides accepting speech input, GRACE can incorporate
gestures, such as when a human points to a given location.
Initially, we were planning on using stereo-based vision to
track both people and their gestures, but this part of the
software was not ready in time. As a last minute backup,
we developed a PDA-based interface, in which movements

Figure 3. Direction Taking

of the stylus on the screen were interpreted as directional
gestures.

Execution monitors run concurrently to ensure both safety
and the integration of various required linguistic and
sensory information. For example, an explicit STOP
command can be issued if unforeseen or dangerous
conditions arise. Also perception processing occurs
concurrently with interaction, allowing the detection of the
destination or a human to be interleaved with other
information required to perform the task.

Two types of direction can be given. For a simple action
command, such as “ turn left,” we assume that the
command is executed immediately, before execution of
any other instructions. The second type of command is an
instruction specifying an intermediate destination, such as
“ take the elevator to the second floor.” In this case, an
intermediate goal is instantiated (getting to the elevator),
and the logic is recursively applied to the new goal (Figure
4). Once all the available directions have been executed
and successfully completed, GRACE concludes that either
she has arrived at the destination or additional information
is required to reach the goal. If GRACE perceives the
destination before all the directions are executed, the
remaining ones are abandoned, and she continues with the
next goal.

Thus, if GRACE asks a human bystander, “Excuse me,
where is the registration desk?” and the human responds,
“Grace, to get to the registration desk, go over there
<accompanied by a gesture>, take the elevator to the
ground floor, turn right, and go forward fifty meters,” the
human’s input is mapped to a representation like the
following:

 Find Registration Desk:
 Find Elevator (ground floor);
 Go over there <gesture>;
 Turn right;

 Go forward 50 meters.

Once GRACE has found the elevator, control is
temporarily turned over to CMU’s elevator riding process
(Section 4.2). When GRACE determines that it is within a
reasonably close distance to the registration desk, the find-
the-desk process is terminated and control is given to the
process that approaches the registration desk (Section 4.3).

4.2 Riding the Elevator

As mentioned previously, the registration area in the Shaw
Convention Centre is not on the same floor as the street
entrance. Our choices in addressing this were rather
limited – stairs are out of the question, and escalators are
no good either. The only viable alternative was to have
GRACE ride the elevator (Figure 5).

The first problem is to find the elevator itself. We assume
that the system has brought the robot near the elevator and
pointed it generally facing it. Thus, the laser should have a
good view of the elevator, and the robot will just need to
perceive the unique signature of the elevator doors in the
laser readings and get itself lined up with the doors. For
instance, given that the robot is positioned as shown in
Figure 6, the system will see laser readings like those in
Figure 7.

While people can readily make out the shapes of the
elevators in the laser points, having the robot find elevators
is unfortunately a bit more involved. The algorithm that we

Figure 4. Human giving directions to GRACE to find

elevator out of view to the r ight

Figure 5. The elevator in Edmonton

Figure 6. The simulation environment

developed to perceive elevators from laser scans is as
follows:

• Straighten out the view of the world
• Find horizontal segments corresponding to

bits of walls
• Filter the segments to eliminate noise and

impossible conditions
• Merge small, adjacent segments into single

segments
• Use feature matching to find possible

elevators
• Filter out impossible elevators

This process is iterative and constantly running. The robot
starts by attempting to fit straight lines to points it sees.
Using these lines, it comes up with a guess of how far off it
is from facing the wall. It then “mentally” rotates the
points in the world and tries again. Fairly quickly, the walls
slide into place, and the system can detect the characteristic
shape of elevator doors.

The system uses a feature-based recognizer to detect
elevators. Given the transformation of the input points, it
is sufficient to consider only horizontal segments, within
some parameterized tolerances for length and offset. In
general, the system looks for three characteristic shapes.
The first shape is a standard elevator inset (Figure 8).
Because elevators are generally of a certain width, but also
have a deeper inset than office doors, the inset information
can fairly reliably pick out an elevator from an office or
conference room. The second two shapes are similar to the
first, but with some information removed. While these are
still valid elevator candidates, the robot would probably
need to move around a bit to get a better view of the
elevator to make a final determination. When these
patterns are applied to the input data of Figure 7, the

system detects the two elevators shown in Figure 9.

One difficulty is that some patterns that are not elevators
can actually look similar to the patterns in Figure 8. For
instance, Figure 11 illustrates two types of patterns that are
not elevators. Note that, in practice, some patterns that
initially look good (e.g., the two patterns on the right in
Figure 8) may actually turn out to be bad patterns when
more information is acquired (by moving around).

After the robot detects an elevator, it gets into position and
waits for the door to open. While the laser can often see
several elevators simultaneously, the robot cannot safely
move fast enough if a door opens too far away. Thus, the
robot picks one elevator to wait in front of, and moves only
if it later decides that a better elevator pattern is nearby.
Specifically, it waits for a while and, after a timeout with
no activity, searches and lines itself up again.

Once it has chosen an elevator and moved in front of it, the
robot waits for some time for the door to open. If the door

opens soon enough (as shown by the laser readings), the
robot navigates in and turns around. When it has
determined (by human interaction or other means) that it is
on the destination floor, it moves out of the elevator when
the path is clear.

Figure 7. Raw laser points

Figure 8. The three valid elevator patterns

Figure 10. The unusual pattern at the Challenge

Figure 11. Two invalid elevator patterns

Figure 9. The system, fully settled, with two elevators

discovered

While the elevator-riding program worked well in testing,
two main problems were encountered when we arrived in
Edmonton. First, the area surrounding the elevator, and the
elevator itself, were made primarily of laser-invisible glass
(see Figure 5). To solve this problem, we discreetly put a
single strip of stylish green tape all around the area, just at
laser height. This neatly solved the problem and drew little
attention from onlookers. The second problem was that the
elevator pattern on the entrance floor of the convention
center was quite unusual. The elevator had a normal inset
on its left, but abutted a long wall on its right (see Figure
10). The solution was to adjust the feature-based
recognizer to accept this pattern as a valid elevator.
Clearly, though, this type of tweaking is not a general
solution to the problem.

With these problems solved, the elevator-riding portion of
the Challenge went quite well. However, there are a few
issues still remaining. The most visible issue relates to the
slowness of the error correcting actions. For example,
when the robot is misaligned in the elevator, it waits for a
long time before it decides to back up and try again. It
should detect and recover from these kinds of errors much
faster. Second, as pointed out above, a more general
recognizer needs to be developed – perhaps one that uses
both laser and vision. Finally, the robot needs to be able to
detect for itself when it is on the correct floor. We are
currently developing a sensor, based on an electronic
altimeter, to determine which floor the robot is on.

4.3 Finding the Registration Booth

Once GRACE reached the registration area (Section 4.1),
the next task was to move up to the registration desk. This
involved two related subtasks: (1) searching for and
visually acquiring the sign indicating the registration desk;
and (2) servoing to the desk guided by a visual fix on the
sign. The standard registration signs used at the Shaw
Convention Centre, which were LCD displays, were too
small and too dim to be seen by the robot’s cameras.
Therefore, we provided our own bright pink registration
sign (Figure 12).

The Swarthmore Vision Module (SVM) [Maxwell et. al.,
2002] provided the vision software capabilities used for
this task. SVM is a general-purpose vision scheduler that
enables multiple vision operators to run simultaneously
and with differing priorities, while maintaining a high
frame rate. It also provides tightly integrated control over
a pan-tilt-zoom camera, such as the Canon VC-C4 that was
used on GRACE.

The SVM library includes a number of vision operators,
one of which (the color blob detector based on histograms)
was used to find the pink sign above the registration desk.
In addition, each vision operator can function in up to six
different modes, including the PTZ_SET and LOOK_AT
modes that were used with GRACE. The PTZ_SET mode
allows software external to SVM to set the position of the
camera by designating pan, tilt, and zoom parameters.
SVM does not independently move the camera in this
mode. In the LOOK_AT mode, SVM is given the 3D
location of the camera and object to be tracked, and sets
the camera to point at the object. If the vision operator
finds the object, SVM moves the camera to track it, within
a limited region around the designated location. The
software for servoing GRACE to the registration desk,
including the interface to both SVM and the lower-level
locomotion software, was written using TDL.

Due to the configuration of the registration area at the
Shaw Centre, GRACE was approximately 15-20 meters
from the registration desk when she first reached a position
to be able to see the registration sign. The first phase of
the task, searching for and finding the sign, was
complicated by the configuration of the registration area.
Although the pink sign was 0.5 by 1.0 meters in size, and
designed to be relatively easy to find, at a distance of 15-20
meters, with the camera’s zoom set to the widest angle (45
degree field-of-view), the sign was only a few pixels in
size and nearly impossible for SVM’s blob detection
operator to find. In order to achieve more robust sign
detection, we increased the zoom (narrowing the field-of-
view to 5 degrees), resulting in a very meticulous, but
slow, search process. During this phase, SVM was used in
PTZ_SET mode, giving full control of the camera to the
TDL code. The shifting light levels in the registration area,
due to time and weather changes, also caused some
difficulties. Histograms for the pink sign trained at a
certain time of day often failed several hours later. To
ameliorate this problem, we trained the histograms
immediately before the start of the Challenge.

Once the registration sign was found, an approximate
distance to the sign was calculated based on the blob
elevation measure provided by SVM. This, in turn, was
used to calculate the 3D location of the sign in the robot’s
global coordinate frame. At this point, the robot oriented
itself to the sign and began moving towards the registration
desk. The blob detection operator was now changed to

Figure 12. The Robot Registration Sign

LOOK_AT mode, providing robust tracking of the sign
during movement. SVM provided updates on the position
of the sign in the pan-tilt frame of the camera; these were
then translated into global coordinates by the TDL code,
which provided both sign and robot location updates to
SVM, as well as corrected the movement of the robot. The
TDL code also adjusted the zoom used by SVM – as
GRACE’s distance to the sign decreased, the field-of-view
of the camera was increased so as to maintain the entire
sign within the image, thereby reducing the chance of
losing the sign and producing more accurate estimates of
the its location. This part of the task was considered
completed when GRACE reached a distance of two meters
from the desk.

4.4 Standing in Line

Once GRACE was near the registration desk, she
proceeded to register. First, however, she waited in line (if
there was one), like any polite conference attendee.
GRACE uses a combination of an understanding of
personal space and range information to stand in line.
GRACE uses the concept of personal space to understand
when people are actually in line, rather than milling around
nearby. People standing in line will typically ensure that
they are close enough to the person in front of them to
signify to others that they are in line, while maintaining a
minimum socially acceptable separation distance. GRACE
also uses this information to ensure that once in line she
does not make others feel uncomfortable by getting too
close to them. The algorithm is based on earlier work using
stereo vision for detecting lines [Nakauchi & Simmons,
2002].

GRACE uses the SICK scanning laser range finder to
identify people and walls. Before each movement, a laser
scan is performed. Clusters in the range data are grouped
into three categories: those that might be people, those that
are likely walls, and other (Figure 13). This classification
is based on the shape of the cluster. To identify people,
the algorithm looks for a small cluster of data points (with
a spread of less than ~50cm) or a pair of small clusters
close together. This simple heuristic incorrectly classifies
a variety of objects that are not people as people, but these
“ false positives” are generally irrelevant in the context of
standing in line to register for a conference.

If a cluster is too big to be a person and the points in the
cluster fall approximately along a line, the cluster is
considered to be a wall. Occlusions in the range data (as
seen in Figure 13) are compensated for by comparing wall
clusters to one another to determine if a single wall
segment can explain them. If this is the case, then those
clusters are combined to provide a better estimate of the
orientation and location of the walls.

The “stand in line” algorithm assumes that GRACE starts
near the registration desk, and that the closest “wall” is the
front of the desk. Once the closest wall has been found,
GRACE rotates away from the desk and searches for the
nearest person standing close to the registration desk. This
person is considered to be the “head of the line” . Once the
head of the line has been identified, the algorithm attempts
to chain nearby people together using the notion of
personal space. Those that are too far from the person in
front of them, or those who are not approximately behind
someone in line, are considered to be not in line. Once the
line is found, GRACE moves towards the back of the line,
intermittently checking for more people in line. Once at
the back of the line, GRACE moves to a position behind
the last person. At this point, GRACE only considers the
person immediately in front of her, maintaining the
personal space between the robot and that person. Once
near the registration desk, GRACE maintains a stand-off
distance until the person in front leaves. When there are no
more people in front of GRACE, she drives to a set
distance from the registration desk and then begins to
register.

4.5 Registering

The objectives for this subtask were to develop an
interaction system that was robust enough so that a
(relatively) untrained person could interact with it and to
present an interface that was natural enough so that the
registrar and observers could interact with GRACE at least
somewhat as they would with a human. The specific task
was for GRACE to obtain all the various registration
paraphernalia (bag, badge, proceedings), as well as the
location and time of her talk.

Figure 13. GRACE’s perception of people in line

Figure 14 illustrates the data and control flow for a typical
interaction cycle with the robot. A wireless microphone
headset is used to acquire speech, which is then converted
to text by ViaVoice. ViaVoice has the ability to read in a
user-specified BNF-style grammar, which it then uses to
assist in speech disambiguation. In fact, it will only
generate utterances that are valid under the loaded
grammar. Obviously, there is an inverse relationship
between the size of the grammar and the recognition
accuracy of ViaVoice (when presented with valid
utterances). We built our own grammar to cover all the
potential utterances we could think of within the given
scope. Since the breadth of interaction involved in

performing the registration task is rather limited, we were
able to achieve satisfactorily accurate recognition.

ViaVoice transmits the utterances that it recognizes as
strings over TCP in its own proprietary format. NRL
developed a module, called UTT, which listens for
transmissions from ViaVoice and re-broadcasts them over
IPC as “utterance” messages. UTT also has a text-based
input mode, which is useful for debugging. The text
strings are then parsed by the utt2signal program.
utt2signal performs the same basic function as Nautilus,
but is significantly more simple and specialized. utt2signal
is based on a Bison parser that was hand-generated from
the ViaVoice BNF grammar. It distills the utterances
down to the primitives that we need to drive our interaction

and transmits the appropriate signals to the “expression”
process (see below). In addition, utt2signal is responsible
for dispatching any raw information gleaned from the
utterances to the appropriate process. For instance, if the
registrar tells GRACE the location of her talk, utt2signal
informs the navigation software of this.

The “expression” process controls the computer-animated
face and the Festival speech generation software. Users
write interaction scripts that include facial expressions,
quoted text, pauses, conditional operators, choice
operators, and most basic math and logic operations. The
scripting language allows the definition of macros, which
consist of basic face movements, utterances, non-face
primitives (such as pauses), and other macros. Even more

powerful is the ability to create and execute hierarchical
finite state machines (see Figure 15). The FSMs can
execute actions when entering a state and can transition
based on signals received from other processes (e.g.,
utt2signal – hence the name). Figure 16 shows a small
sample of the script used for the registration task.

Figure 14. Information flow for the registration desk

task

Figure 15. Simplified FSM for the registration task

Exampl e of expr essi on def i ni t i on
Expr essi on def i ni t i ons ar e of t he f or m
DEFI NE expr essi onName
{ say(" <ut t er ance>")
[one or mor e expr essi on macr os]
[l i p synchi ng macr os]
}

For exampl e:

DEFI NE badgeYesPr ompt
 { say(" May I have my badge pl ease?")
 [dhappy2]
 [pause(0. 129) mm me mi ma mm mi ma msh mp me pause(0. 079) msh mn]
}

Exampl e of DFA / FSM

I ncl usi on of ot her FSM and expr essi on def i ni t i on f i l es i s
al l owed f or maxi mum f l exi bi l i t y
i ncl ude " r egi st er . f sm"
i ncl ude " mut t er . pho. expr "

Def i ne t he i ni t i al and f i nal st at es of a FSM
BEHAVI OR- MACHI NE Mut t er Machi ne
 i ni t i al MM_Ent er
 f i nal MM_Fi nal

BEHAVI OR MM_Ent er
 # Tr ansi t i on i mmedi at el y i f ei t her of t hese s i gnal s i s r ecei ved,
 # even i nt er r upt i ng speech i n pr ogr ess
 t r ansi t i on i nt er r upt ed " speech: r eset " MM_Fi nal
 t r ansi t i on i nt er r upt ed " cont r ol : st opMut t er " MM_Fi nal
 per f or m
 [# Ser i al i ze ever yt hi ng i n [] ' s
 # Fi r st , choose somet hi ng t o say
 CHOOSE(
 mut t er 1,
 mut t er 2,
 mut t er 3) ,
 pause(2) ,
 r emoveText Bubbl e,
 s l owNor mal ,
 smi l ey,
 # Then, choose how l ong t o wai t
 CHOOSE(
 pause(5) ,
 pause(15) ,
 pause(30))
]
 # Fi nal l y, do t hi s al l over agai n
 # Thi s t r ansi t i on f i r es onl y when t he pr ecedi ng per f or m cl ause
 # has compl et ed
 t r ansi t i on MM_Ent er

Ther e ar e no t r ansi t i ons out of t hi s node, t hus s i gnal i ng t he
t er mi nat i on of t he FSM
BEHAVI OR MM_Fi nal
 per f or m sl owNor mal

Figure 16. Sample expressions and FSM ’s for the registration desk task

Since utt2signal abstracts out the actual parsing, the FSM
can concentrate on the content, which decreases its
complexity. In addition, execution time scales well with
the size and number of finite state machines. In the future,
this will allow much more complex interactions to be
driven without worrying about computational
requirements.

GRACE’s face (Figure 17) is one of the most important
aspects of her ability to interact with humans. It is used for
both emotional expression and for simple gestures, since
GRACE lacks any conventional manipulators. The face is
based on an implementation of the simple face in [Parke &
Waters, 1996]. It incorporates a muscle-level model of
face movement to allow semi-realistic face motions. It
accepts muscle and simple movement commands from
expression; macros of these commands are built up within
the “expression” process to allow easy access to
complicated expressions or gestures.

Last, but not least, is GRACE’s ability to generate speech.
We use a version of Festival that was modified to enable it
to generate phonemes for a given utterance, which are then
processed to extract lip-synching information. Festival
performed admirably, overall, with two notable exceptions:
it tends to speak in a monotone and cannot handle
acronyms. While it is possible to embed pitch changes in
strings sent to Festival, this was too labor-intensive to take
advantage of this year, and does not tend to produce
convincing speech, in any case. Likewise, it is possible to
embed phonetic pronunciations, to deal with utterances
such as “AAAI.”

There were a number of small, persistent problems with the
interaction. First, ViaVoice had trouble with short
utterances, often misinterpreting them as numbers. Since
an utterance of just numbers was parsed as a statement of
the time of GRACE’s talk, this could cause some
confusion. However, GRACE was able to recover from
such mistakes, due to the structure of the driving FSM.

The other problem had to do with the disambiguation of
pronouns and other generic statements. GRACE
disambiguates such statements as “here you go,” “no,” or
“you have it” based on the latest prompt that she gave (i.e.,
what state of the FSM she is currently in). However, if
GRACE prompted the registrar and the registrar began to
respond, but ViaVoice did not complete recognizing the
utterance until after GRACE had timed out and begun the
next prompt, GRACE would believe that a non-specific
statement was about the new prompt, even if she has only
said a syllable or two of it. This obviously caused some
problems, as the potential existed for her belief of the state
of the world to get out of sync with reality, resulting in
very unnatural interaction.

4.6 Navigating to the Talk

After registering, the Challenge robots are allowed to use a
map to navigate in the building. Ideally, the robots would
actually read the map given to them. GRACE, however,
used a map that she had built previously and was saved on
disk. The map was used to help GRACE make her way

Figure 17. GRACE’s Face

Figure 18. M ap built by GRACE of the Shaw

Convention Centre

from the registration desk to the talk venue. The map-based
navigation task was comprised of three main technologies:
map-building, localization, and navigation control.

The evening prior to the Challenge event, GRACE was
driven around the convention center. During this time,
time-stamped odometry and laser range data were recorded
to file. This data was then used to build a map through a
process called scan matching [Lu & Milios, 1997]. The
implementation of our scan-matching algorithm was
adapted from a software package provided by Dirk Hahnel
at the University of Freiburg [Hahnel et. al., 2002].
Generating a map from laser and odometry data is largely
an automated process, although our implementation also
allows the user to correct misalignments after the scan-
matching process. The output of the map-building process
is an occupancy grid map, shown in Figure 18. This map is
89.4 x 10.8 m, with a resolution of 10cm/grid cell. The
black pixels represent regions of space with a high
probability of occupancy, such as walls, chairs, etc.
Similarly, the white areas are regions of space with a low
probability of occupancy. Not shown in this image are
regions of space where no data could be collected (i.e.,
behind walls).

GRACE uses a probabilistic approach to localization called
Markov Localization. The localizer estimates a probability
distribution over all possible positions and orientations of
the robot in the map given the laser readings and odometry
measurements observed by the robot. This probability
distribution is approximated using a particle filter [Thrun
et. al., 2000]. GRACE is initialized with an approximate
starting position, and the distribution of particles evolves to
reflect the certainty of the localizer’s position estimate.

As GRACE moves, the probability distribution is updated
according to:

� −−−−⋅= 1111)(),|()|()(iiiiiii dsspassipsopsp η

where si is the pose at time i, ai-1 the last action, and oi the
last observation.

Navigation was performed using a two-level system. The
low-level system uses the Lane-Curvature Method [Ko &
Simmons, 1998] to convert commands in the form of
directional headings to motor velocity commands. The
high-level planner consists of an implementation of a
Markov Decision Process planner [Burgard et. al., 1998;
Konolige, 2000]. The planner operates by assigning a
positive reward to the goal location, and negative reward to
poses close to obstacles. The planner uses value iteration to
assign a value to each cell; this value corresponds to the
future expected reward of each cell, as in the following
equation:

�
�
�

�
�
�
�

�
+= ��

==

||

1

||

1

)),|(|()()(max)(
A

k
iikj

S

j
ji

a
i ssaspsVsRsV πγ

where R(si) is the immediate reward of robot pose si, and
V(si) is the expected reward to be maximized. The planner
extracts the maximum-likelihood path by choosing from
the start state (the current pose of the robot as given by the
localizer) successive states that maximize the expected
reward. The directional command passed to the low-level
controller is just the direction of the neighboring state with
the highest expected reward.

During execution of the planned path, the planner also
integrates sensor information, based on the current pose
estimate from the localizer, to make changes to the map.
This allows the planner to compensate for small errors in
localization and changes to the environment that could
invalidate certain paths.

4.7 Giving the Talk

Once GRACE navigated to the lecture area (in the
Exhibition Hall), she gave a talk about the technologies
that comprised her. GRACE’s talk-giving system is an
attempt to scale behavior-based architectures directly to
higher-level cognitive tasks. The talk-giver combines a set
of behavior-based sensory-motor systems with a marker-
passing semantic network, a simple parser, and an
inference network, to form an integrated system that can
both perform tasks and answer questions about its own
ability to perform those tasks. It interfaces with the
computer-animated face and Festival speech generation
systems to do the actual presentation.

The talk system is structured as a parallel network of logic
gates and finite-state machines. Inference rules in the
system are compiled into a feed-forward logic network.
This gives it circuit semantics: the inputs of the network
monitor the truth-values of premises as generated by the
sensory systems and the outputs of the network track the
truth-values of conclusions in real-time as the premises
change. In effect, the entire rule base is rerun from scratch
to deductive closure at sensory frame-rates. Although this
sounds inefficient, the rule engine can run a base of 1000
Horn rules with 10 conjuncts each, updating at 100Hz (100
complete reevaluations of the knowledge base per second),
using less that 1% of the CPU. Using a generalization of
deictic representation called role passing [Horswill, 1998],
the network is able to implement a limited form of
quantified inference – a problem for previous behavior-
based systems. Rules may be quantified over the set of
objects in short-term memory, provided they are restricted
to unary predicates (predicates of one argument).

The talk-giving system implements reflective knowledge –
knowledge of its own structure and capabilities – through
two mechanisms: a marker-passing semantic network

provides a simple mechanism for long-term declarative
memory, while role passing allows variables within
inference rules to be bound to behaviors and signals within
the system. The former allows the system to answer
questions about its own capabilities, while the latter allows
it to answer questions about its current state and control
processes.

The talk-giving system can follow simple textual
instructions. When a human issues a command such as
“drive until the turn,” its simple parser, which is formed as
a cascade of finite-state machines, examines each
individual word, binding the appropriate words to the
appropriate roles. In this case, the parser binds the dr i ve
behavior to the role act i v i t y and the t ur n? sensory
signal to the role dest i nat i on. When it detects a stop
(e.g., a pause), it triggers the handl e- i mper at i ve
behavior, which implements the rules:

• If the signal bound to dest i nat i on is
false, activate the behavior bound to
act i v i t y .

• If dest i nat i on is bound to a sensory
signal and that signal is true, deactivate
act i v i t y and myself.

• If act i v i t y deactivates itself, also
deactivate myself.

Since this behavior is parameterized by other behaviors,
we call it a higher-order behavior, in analogy to the
higher-order procedures of functional programming
languages. Other examples are the expl ai n behavior,
which walks a subtree of the semantic network to produce
a natural language explanation of the behavior, and the
demo behavior, which both explains and runs the
behavior. Role passing and higher-order behaviors are
easily implemented using parallel networks of gates and
finite-state machines, making them a natural choice for the
kind of distributed, parallel processing environments often
found on mobile robots. They are implemented in GRL, a
functional programming language for behavior-based
systems that provides many of the amenities of LISP, while
statically compiling programs to a network of parallel
finite-state machines.

To give a talk (Figure 19), GRACE uses the Linksys
wireless connection to a laptop to open a PowerPoint
presentation, reads the text of each bullet-point, and uses
keyword matching to find an appropriate node in its
semantic network. It uses a novel distributed
representation of a discourse stack to resolve ambiguities,
using only SIMD marker-passing operations. Having
determined the node to which the bullet-point refers,
GRACE uses spreading activation to mark the subtree
rooted at the selected node as being relevant. She then
discusses the topic by continually selecting and explaining
the “highest priority” relevant, unexplained, node.

Priorities are computed off line using a topological sort so
that if topic A is required to understand topic B, A will
always have higher priority.

Continually reselecting the highest priority, relevant,
unexplained node using circuit semantics gives GRACE
the ability to adjust its patter in response to unexpected
contingencies. Although the current system doesn’ t make
much use of this capability, we intend to make extensive
use of it in next year’s system. If, for example, GRACE
had to maneuver its was around a bystander in the process
of demonstrating its navigation system, it might insert a
digression about social interaction and the need to say
“excuse me.” When, later in the talk, it came to the section
on social interaction, it would realize it had already
discussed the topic and simply make reference to its earlier
discussion. It also allows the robot to cleanly respond to,
and return from, interruptions without replanning.
However, such topic shifts require the generation of
transition cues such as “but first …” or “getting back to
…”. The talk code detects these abrupt topic shifts by
tracking the current semantic net node, its parent node, and
the previous node and parent. By comparing these, the
system can determine whether it has moved locally up,
down, or laterally in the hierarchy, or whether it has made
a non-local jump to an unrelated node. It then generates
the appropriate transition phrase.

The talk-giver is far from fluent. It is not intended to
demonstrate that behavior-based systems should be the
implementation technique of choice for natural language
generation. Instead, it shows that parallel, finite-state
networks are much more powerful than previously
believed. Moreover, by implementing as much of a robot’s
control program as possible with these techniques, we get
efficiency, easy parallelization, and flawless
synchronization of the knowledge base with the
environment.

Figure 19. GRACE gives a talk

5. Discussion and Summary

On Wednesday July 31, GRACE attempted the AAAI
Robot Challenge, in front of hundreds of interested
onlookers and the media. GRACE successfully completed
each of the subtasks described above, with a minimal
amount of extraneous human intervention. GRACE took
about 60 minutes to travel from the entrance of the Shaw
Convention Centre, down the elevator, to the registration
desk, and then to the lecture area in the Exhibition Hall.
This compares to about 20 minutes taken by the other entry
that attempted the complete Challenge – the CoWorker
built by iRobot – but that robot was remotely teleoperated
by a person in the convention center.

While each of the subtasks was successful, and GRACE
successfully completed an end-to-end run, each subtask
also demonstrated need for improvement. Probably the
most critical problem was based on our use of ViaVoice
for speech recognition. ViaVoice has trouble with
background noise and stress in the speaker’s voice.
Although we have found that someone who has worked
regularly with ViaVoice can achieve high recognition rates
using our large vocabulary and grammar, new users in
stressful situations can have greatly reduced recognition
rates. A Ph.D. student who came to NRL for the summer to
work on the GRACE project did the interaction during the
challenge. With each misunderstood utterance, the level of
stress in the student increased (particular with the very
large crowd of onlookers and press), resulting in yet lower
recognition rates. To try and remedy this, we are in the
process of evaluating Sphinx for speech recognition (see
http://www.speech.cs.cmu.edu/sphinx). This might also
enable us to move to an on-robot microphone system,
which would eliminate the need for the speaker to don a
wearable microphone. This would enhance GRACE’s
appearance as an independent entity and enable random
interaction.

While the human-robot interaction (aside from the speech
recognition) worked relatively well, there were areas for
improvement. For instance, gesture recognition, which
works on the NRL robots, was not successfully integrated
in time for GRACE. As a fallback position, a PDA device
was programmed to allow the human to “point” a direction
on its screen. However, this interface failed to start
properly at the beginning of GRACE’s run. Without the
ability for the human to give gestures, the resulting
interaction was closer to “verbal teleoperation.” We
expect to have full gesture capability nest year.

In addition, NRL has developed an ability to talk about
semantic entities in the environment (e.g., “ turn left down
the next corridor”), but the ability to recognize these
features is not yet integrated on GRACE. These
capabilities would make interaction much more natural.

For the elevator-riding task, the robot needed to have a
person hold the elevator doors open, in order to give it time
to enter and exit before the doors closed. Part of this was
due to the fact that the robot did not recognize changes to
the environment fast enough. Also, the robot also did not
have any way of determining which floor it was on (we are
working on this by developing an electronic altimeter – see
Section 4.2).

Visual servoing to the registration desk suffered from
several problems. First, as described in Section 4.3,
changes in lighting could cause the recognition algorithm
to fail, and so the system had to be retrained on a periodic
basis. Second, when the robot was far away, the sign
appeared too small to be readily identified; but, zooming in
gave a very small field of view, which slowed the search
for the sign considerably. To deal with this, we are
considering a multi-scale approach, where the robot first
does a coarse scan at a wide field of view, and then checks
possible sign locations more thoroughly by zooming in.
Finally, if the robot moved quickly, the tracker often lost
sight of the sign. This can also probably be addressed by
adjusting the zoom.

During testing, the standing in line code was very reliable.
During the Challenge itself, the robot barged into line,
nearly hitting one of the judges. The cause was traced to a
bug in the software that determined the robot’s trajectory
to the end of the line. The software worked in many tests,
but later it was determined that it only worked for lines of
one or two people (the maximum we had tested on), but at
the Challenge there were five people in line. Needless to
say, that bug has since been fixed. The task of registering
had problems with ViaVoice, as described above. Also,
that task used a different grammar from the “getting to the
registration area” task. During the Challenge, we forgot to
load the correct grammar, which meant that the robot had
very little chance of interacting correctly. Fortunately, this
was noticed, and corrected, part way through the task.

The navigation part of the task suffered a bit from getting
lost. The causes were twofold: 1) the environment had
changed significantly from when the map was built the
night before (extra tables were set up for food), and 2)
there were hundreds of people around the robot, making it
hard for the sensors to see the walls and other static
structures that had been mapped. Unfortunately, some
human intervention was needed to relocalize the robot. We
need to look much more carefully at how to do map-based
navigation in environments that are very different from
when the map was first made. Finally, the talk-giving task
worked flawlessly. For next time, however, we plan to
have the robot demonstrate various aspects of itself – this
is currently supported in the talk-giving software, but there
was not enough time to develop the demonstrations
themselves and integrate them into the talk.

Our plans for the 2003 Challenge are threefold. First, we
will work to make the current capabilities much more
robust. Second, we will integrate the capabilities more
tightly. In particular, we will have the robot itself
determine when to transition between subtasks. Third, we
will add new capabilities. We intend to have vision-based
and stereo-based people detection and tracking, people
following, gesture recognition, nametag reading, and face
recognition. We plan to incorporate capabilities for the
robot to “schmooze” with other participants and to answer
its own questions after the talk. We would like to have the
robot perform its own crowd control. In the hardware
domain, it would be desirable to add more physical
flexibility to GRACE’s face, such as putting the screen on
a pan/tilt unit. Finally, there is the possibility of bringing
another robot, and have a team trying to attend the
conference. Imagine two attendees who arrive together,
looking together for the registration area, or one that
arrives earlier and meets the second near the entrance and
tells them what they have learned about the location of the
registration desk. We are also considering having one
robot handle crowd control for the second robot!

Our biggest lesson learned was the amount of work
required to achieve interaction among the different
modules. The bulk of our work this first year was in getting
the interfaces defined and working. Yet we believe that we
have to go much further next year. In particular, we had
several failures occur due to having to manually start
software when moving from one part of the challenge to
the next. We will be developing a program that will
automatically start each module. This should result in less
human errors.

While we did accomplish mush this year, we are looking
forward to adding a significant amount to GRACE for next
year. In addition to the automatic starting of processes, we
expect to have tighter interaction among components,
different and more robust human interactions, gesture
recognition, better recognition of humans using multiple
techniques, and possibly even the ability for the robot to
demo itself during its talk and answer simple questions.

References
[Burgard et. al., 1998] W. Burgard, A.B. Cremers, D. Fox,

D. Hahnel, G. Lakemeyer, D .Schulz, W. Steiner, and S.
Thrun. “The Interactive Museum Tour-Guide Robot.” In
Proceedings of the AAAI Fifteenth National Conference
on Artificial Intelligence, 1998.

[Hahnel et. al., 2002] D. Hahnel, D. Schulz, and W.
Burgard. “Map Building with Mobile Robots in
Populated Environments.” In Proceedings of Conference
on Intelligent Robotics and Systems, 2002.

[Horswill, 1998] I. Horswill, "Grounding Mundane
Inference in Perception," Autonomous Robots, 5, pp. 63-
77, 1998.

[Ko & Simmons, 1998] N.Y. Ko and R. Simmons. “The
Lane-Curvature Method for Local Obstacle Avoidance.”
In Proceedings of Conference on Intelligent Robotics
and Systems, Vancouver, Canada, 1998.

[Konolige, 2000] K. Konolige. “A Gradient Method for
Realtime Robot Control.” In Proceedings of Conference
on Intelligent Robotic Systems, 2000.

[Lu & Milios, 1997] F. Lu and E. Milios. “Globally
Consistent Range Scan Alignment for Environment
Mapping.” Autonomous Robots, 4:333-349, 1997.

[Maxwell et. al., 2002] B.A. Maxwell, N. Fairfield, N.
Johnson, P. Malla, P. Dickson, S. Kim, S. Wojtkowski,
T. Stepleton. “A Real-Time Vision Module for
Interactive Perceptual Agents.” Machine Vision and
Applications, to appear 2002.

[Nakauchi & Simmons, 2002] Y. Nakauchi and R.
Simmons. “A Social Robot that Stands in Line.”
Autonomous Robots, 12:3 pp. 313-324, May 2002.

[Parke & Waters, 1996] F. Parke and K. Waters. Computer
Facial Animation. A.K. Peters, Ltd., December 1996,
ISBN 1-56881-014-8.

[Perzanowski et. al., 1998] D. Perzanowski, A.C. Schultz,
and W. Adams. “ Integrating Natural Language and
Gesture in a Robotics Domain.” In Proceedings of the
International Symposium on Intelligent Control, IEEE:
Piscataway, NJ, pp. 247-252, 1998. [Simmons &
Apfelbaum, 1998] R. Simmons and D. Apfelbaum. “A
Task Description Language for Robot Control.” In
Proceedings of Conference on Intelligent Robotics and
Systems, Vancouver, Canada, 1998.

[Perzanowski et. al., 2001] D. Perzanowski, A.C. Schultz,
W. Adams, E. Marsh, and M. Bugajska. “Building a
Multimodal Human-Robot Interface.” In IEEE
Intelligent Systems, IEEE: Piscataway, NJ, pp. 16-21,
2001.

[Perzanowski et. al., 2002] D. Perzanowski, A.C. Schultz,
W. Adams, W. Skubic, M. Abramson, M. Bugajska, E.
Marsh, J.G. Trafton, and D. Brock. “Communicating
with Teams of Cooperative Robots.” Multi-Robot
Systems: From Swarms to Intelligent Automata, A. C.
Schultz and L.E. Parker (eds.), Kluwer: Dordrecht, The
Netherlands, pp. 185-193. 2002.

[Simmons & Apfelbaum, 1998] R. Simmons and D.
Apfelbaum, "A Task Description Language for Robot
Control," Proceedings Conference on Intelligent
Robotics and Systems, October, 1998.

[Thrun et. al., 2000] S. Thrun, D. Fox, W. Burgard and F.
Dellaert. “Robust Monte Carlo Localization for Mobile
Robots.” Artificial Intelligence, 101:99-141, 2000.

[Wauchope, 1994] K. Wauchope. Eucalyptus: Integrating
Natural Language Input with a Graphical User
Interface. Tech. Report NRL/FR/5510-94-9711, Naval
Research Laboratory: Washington, DC, 1994.

Bios

Reid Simmons is a Principal Research Scientist in
Robotics and Computer Science at Carnegie Mellon
University. His work focuses on developing reliable,
autonomous robots. This includes research in robot
architectures, probabilistic planning and reasoning, formal
verification, robot navigation, multi-robot coordination,
and human-robot social interaction. Reid has been involved
with the AAAI Robot Competition and Challenge from its
inception.

Dani Goldberg received his Ph.D. and M.S. degrees from
the University of Southern California in 2001 and 1999,
and his B.A. from Brandeis University in 1996. He is
currently a Postdoctoral Fellow at the Robotics Institute,
Carnegie Mellon University, where his work involves
multi-robot coordination and control.

Adam Goode is a research programmer in the ACT-R
Research Group and a masters student in the Human-
Computer Interaction Institute at Carnegie Mellon
University. He earned his bachelor's degree in computer
science and psychology in the Minds and Machines
program at Rensselaer Polytechnic Institute in Troy, NY.

Michael Montemerlo is a graduate student in the Robotics
Ph. D. program at Carnegie Mellon University in
Pittsburgh. His research interests include probabilistic
planning models and machine learning. He is a co-author
of the Carmen mobile
robot control software suite.

Nicholas Roy is a graduate student in the Robotics Ph. D.
program at Carnegie Mellon University in Pittsburgh. His
research interests include probabilistic planning models
and machine learning. He is a co-author of the Carmen
mobile robot control software suite.

Brennan Sellner is a PhD student at the Carnegie Mellon
Robotics Institute. His primary research is currently
cooperative manipulation with heterogeneous
manipulators.

Chris Urmson is a Ph.D. student at Carnegie Mellon
University. His research focuses on the development of
real-time kino-dynamic planning techniques for mobile
robots.

Bruce Maxwell is an Assistant Professor of Engineering at
Swarthmore College. He received a B.A. in Political
Science and a B.S. in Engineering with a concentration in

Computer Science from Swarthmore College, an M. Phil.
from Cambridge University, and a Ph.D. in Robotics from
the Robotics Institute at Carnegie Mellon University. His
primary research interests are computer vision, robotics,
computer graphics, data mining and visualization.

Alan Schultz is the head of the Intelligent Systems Section
at the Navy Center for Applied Research in Artificial
Intelligence at the Naval Research Laboratory in
Washington DC. His work focuses in the area of
autonomous systems, including human-robot interaction,
multi-modal interfaces, and learning and adaptation in
autonomous systems. Alan has been active in robotics
competitions, including AAAI and and Botball, and is a
KISS Institute for Practical Robotics Fellow.

Myriam Abramson received her B.Sc. and M.Sc. degrees
in computer science at George Mason University in 1984
and 1989 respectively and is completing her Ph.D this
year in the area of reinforcement learning. She has
extensive experience in diverse areas of artificial
intelligence and machine learning. She has been a AAAI
member since 1989.

William Adams received his B.S. in computer engineering
from Virginia Tech in 1991 and his M.S. degree in
electrical and computer engineering from Carnegie Mellon
University in 1994. He is currently employed at the Naval
Research Laboratory in Washington, DC, working in many
areas of mobile robotics including computer vision,
mapping, localization, planning, navigation, and
multimodal robot interaction combining speech, gestures,
and PDA devices.

Amin Atrash received his B.S. in Computer Science in
1999 and is now current a graduate student at the Georgia
Institute of Technology. He interned at the Naval Research
Laboratory in the summers of 2001 and 2002. His research
interests include robotics, machine learning, and planning.

Magda Bugajska is a computer scientist at the Navy Center
for Applied Research in Artificial Intelligence. She
received a B.S. in Mathematics and Computer Science with
minor in AI and Robotics from Colorado School of Mines
and is currently enrolled in a M.S. degree program in
Computer Science at George Mason University. Her
research interests include evolutionary computation,
cognitive modeling, and robotics.

Michael Coblenz is a sophomore at the School of
Computer Science at Carnegie Mellon University. He
worked on the navigation from the door to the registration
desk task in the Challenge as a summer intern at the Naval
Research Laboratory.

Matt MacMahon is a PhD student studying Artificial
Intelligence at the University of Texas at Austin. He has
worked at Stanford University, the Austrian Research

Institute for AI, NASA Johnson Space Center, and the
Naval Research Laboratory. His research interests focus
on the cognitive processes of spatial reasoning and natural
language understanding in people and robots.

Dennis Perzanowski is a computational research linguist in
the Intelligent Multimodal Multimedia Group at the Navy
Center for Applied Research in Artificial Intelligence at the
Naval Research Laboratory in Washington, DC. His
technical interests are in human-robot interfaces, speech
and natural language understanding, and language
acquisition. He received his MA and PhD in linguistics
from New York University. He is a member of the AAAI
and the Association for Computational Linguistics.

Ian Horswill is an associate professor of computer science
at Northwestern University. His research focuses on
integrating high-level reasoning systems with low-level
sensory-motor systems on autonomous robots. He received
his BSc from the University of Minnesota in 1986 and his
PhD in computer science from the Massachusetts Institute
of Technology in 1993.

Robert Zubek is a Ph.D. candidate at Northwestern
University, where he also received his previous degrees.
His research interests include robotics and artificial
intelligence in computer entertainment."

David Kortenkamp, Tod Milam and Bryn Wolfe support
NASA Johnson Space Center’s Automation, Robotics and
Simulation Division. Dr. Kortenkamp and Mr. Wolfe
work for Metrica Inc. and Mr. Milam works for S&K
Technologies. At NASA JSC the three of them are
involved in a variety of robotics and artificial intelligence
projects in support of human space flight. Dr. Kortenkamp
received his PhD in computer science and engineering
from the University of Michigan and his BS in computer
science from the University of Minnesota. Mr. Wolfe
received his BS in computer engineering from the
University of Arizona and an MS in computer engineering
from the University of Houston Clear Lake. Tod Milam
has a BS in computer science from Drake University.

