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Abstract 

In an attempt to solve as much of the AAAI Robot 
Challenge as possible, five research institutions 
representing academia, industry and government, 
integrated their research in a single robot named 
GRACE. This paper describes this first year effort by the 
GRACE team, and describes not only the various 
techniques each participant brought to GRACE, but also 
the difficult integration effort itself. 

 
1. Introduction 

The AAAI Robot Challenge was established four years ago 
as a “grand challenge”  for mobile robots.  The main 
objectives of the Challenge are to (a) provide a task that 
will demonstrate a high level of intelligence and autonomy 
for robots acting in a natural, peopled, dynamic 
environment, (b) stimulate state-of-the-art robotics 
research to address this task, and (c) use robot 
demonstrations to educate the public about the exciting and 
difficult challenges of robotics research.  The Challenge 
was designed as a problem that would probably need a 
decade to achieve adequately.  When the challenge was 
designed, it was anticipated that no single research 
institution would have adequate resources to meet the 
Challenge on its own. 

The Challenge task is for a robot to attend the AAAI 
National Conference on Artificial Intelligence as a 

participant – the robot must find the registration booth and 
register, interacting with people as needed, then with a map 
in hand, find its way to a location in time to give a 
technical talk on itself. Ideally, the robot should be given 
no more information than any other participant arriving in 
a new city to attend a major technical conference. In 
particular, that means that the robot should not know the 
layout of the convention center beforehand, and the 
environment should not be modified.  Practically, however, 
the organizers understand that compromises and flexibility 
will be necessary in order to get current state-of-the-art 
robots to achieve the task.  

There are a number of important technologies that are 
needed to meet the Challenge. These include localization 
in a dynamic environment, safe navigation in the presence 
of moving people, path planning, dynamic replanning, 
visual tracking of people, signs, and landmarks, gesture 
and face recognition, speech recognition and natural 
language understanding, speech generation, knowledge 
representation, and social interaction with people.  While 
researchers have worked on all of these areas, to a greater 
or lesser extent, they all need further work to be robust in 
the environment that the Challenge specifies.  In addition, 
a major challenge is the integration of these technologies. 

In August 2001, several of the authors agreed to join 
efforts to attempt the Challenge in its entirety.  We had all 
been working on technologies related to the Challenge, and 
felt that by pooling our efforts we could do reasonably 
well.  In addition, we believed that the type of 



collaborative work that was needed to pull this off would 
help advance robotics.  We realized that integrating 
hardware and software from five institutions would be very 
difficult.  Our first year goal, therefore, was to create an 
architecture and infrastructure that would enable us to 
integrate our existing software into a system that could do 
a credible job with the Challenge task.  We all agreed that 
this would be a multi-year effort, and that in subsequent 
years we would build on this year’s robot system. 

In email and meetings during the winter of 2002, we 
formulated the basic approach and architecture. We 
decided that there were several possible approaches: 1) we 
could bring our own robots and each do part of the task, 
“handing off”  from one to another, 2) we could use a 
common hardware platform, but use our own, existing 
software, or 3) we could do a full-blown hardware and 
software integration.  We quickly agreed to try for option 
3, but that option 2 would be a good fallback position.  We 
spent the spring of 2002 converting existing software to 
run on the common hardware platform (see Section 2) and 
common integration architecture (see Section 3). In the 
end, we achieved somewhere between options 2 and 3, 
with the robot successfully performing most of the major 
subtasks with little human intervention (see Section 4).  In 
July 2002, we traveled to the National Conference on 
Artificial Intelligence at the Shaw Convention Centre in 
Edmonton, Alberta to take part in the Challenge. 

2. Robot Hardware 

GRACE (Graduate Robot Attending ConferencE) is built 
on top of a B21 Mobile Robot built by RWI. GRACE has 
an expressive computer-animated face projected on a 15”  
flat-panel LCD screen, as well as a large array of sensors 
(see Figure 1). The sensors that come standard with the 
B21 include touch, infrared, and sonar sensors. Near the 
base is a SICK scanning laser range finder that provides a 
180-degree field of view. 

 

 

Figure 1. The robot GRACE 

At one of our first meetings, we discussed the various 
hardware each team would need to integrate into the CMU 
platform.  GRACE has several cameras, including a stereo 
camera head on a pan-tilt unit built by Metrica TRACLabs 
and a single color camera with pan-tilt-zoom capability, 
built by Canon. GRACE can speak using a high-quality 
speech generation software (Festival), and receive speech 
responses using a wireless microphone headset (a Shure 
TC Computer Wireless transmitter/receiver pair). 

GRACE runs all software on board.  Two 500 MHz 
processors, running Linux, run most of the autonomy 
software. A Sony Vaio Picturebook laptop, running 
Windows, runs the speech recognition and natural 
language understanding software.  In addition, there is a 
separate processor for the Metrica stereo head, and a 
Linksys wireless access point to connect the robot to the 
outside world (for debugging, monitoring, and for giving 
the talk). 

3. Software Architecture 

One of the more difficult parts of the Challenge for us was 
determining how to integrate a vast amount of software 
that had been developed by the participating institutions, 
mostly on different hardware platforms.  Early on, we 
decided to integrate everything onto a common hardware 
platform as described above, with different groups 
providing software “services”  that would interface to 
various pieces of hardware.  The idea was that the 
“services”  would abstract away details of the actual 
hardware platform, making subsequent development 
easier. Development of interfaces between modules 
occupied the bulk of our initial work.  Each team needed to 
define the inputs and outputs of their modules, and work 
out details of how the various modules would interact. In 
particular, Carnegie Mellon University (CMU) provided 
interfaces to the robot base (motion and localization), 
speech generation, and computer-animated face, the Naval 
Research Laboratory (NRL) provided speech recognition 
and natural language understanding interfaces, Swarthmore 
provided vision processing code and control over the 
Canon pan/tilt/zoom camera, and Metrica provided stereo 
vision and control over their pan/tilt head.  In addition, 
CMU provided a simple graphical simulator so that 
programs could be tested remotely, in advance of 
integration on the actual robot platform. 

Software for the various subtasks was then built on top of 
these services. While the services, for the most part, were 
task-independent, the software that ran the various tasks 
was a mixture of task-independent and task-dependent 
code.  In particular, NRL was responsible for the part of 
the Challenge from when the robot entered the conference 
center until it was near the registration booth, CMU was 
responsible for elevator riding, getting in line at the 
registration booth (using Swarthmore’s vision system), 



registering for the conference, and navigating to the lecture 
area, and Northwestern was responsible for having 
GRACE give its talk. Figure 2 presents a high-level view 
of the software architecture and development 
responsibilities.  Section 4 presents details of the task-level 
software.   

To facilitate distributed development, and to simplify 
testing and debugging, the GRACE system was designed 
as a set of independent programs that communicated via 
message passing. The IPC package 
(www.cs.cmu.edu/~IPC) was chosen for (nearly all) 
communications, because of its expressiveness, ease of 
use, and familiarity by some of the teams (both CMU and 
Metrica have used IPC in the past). As much as possible, 
all software was to be written in C or C++ (using the GCC 
2.96 compiler), running under Red Hat Linux 7.2.   
Exceptions included the use of a Windows laptop to run 
ViaVoice (www.ibm.com/software/speech), the use of 
Allegro Common Lisp for NRL’s Nautilus natural 
language understanding system, and the use of Swig and 
Python for the elevator riding code.  In addition, OpenGL, 
Perl and Festival (www.cstr.ed.ac.uk/projects/festival) 
were used for the computer-animated face and speech 
generation. 

Finally, the computer-animated face and several of the 
task-level programs were written using the Task 
Description Language (TDL).  TDL is an extension of C++ 
that contains explicit syntax to support hierarchical task 
decomposition, task synchronization, execution 
monitoring, and exception handling (see 
www.cs.cmu.edu/~TDL and [Simmons & Apfelbaum, 

1998]).  A compiler translates TDL code into pure C++ 
code that includes calls to a domain-independent Task-
Control Management library (TCM).  The translated code 
can then be compiled using standard C++ compilers and 
linked with other software.  The idea is to enable complex 
task-level control constructs to be described easily, 
enabling developers to focus more on the domain-
dependent aspects of their programs. 

4. Doing the Challenge Task 

As mentioned before, the Challenge is to have an 
autonomous mobile robot attend the National Conference 
on Artificial Intelligence.  More specifically, the Challenge 
rules (www.cs.utexas.edu/users/kuipers/AAAI-robot-
challenge.html) are to have the robot perform the following 
subtasks: 

1. Start at the front door of the conference center; 
2. Navigate to the registration desk (ideally by 

locating signs and/or asking people and/or 
following people – at this point, the robot does not 
have a map of the building);  

3.  Register: stand in line if necessary, have the robot 
identify itself, receive registration material, a map 
of the conference center, and a room number and 
time for its talk; 

4.  Interact with other conference attendees (ideally 
recognize participants by reading nametags or 
recognizing faces and schmooze – striking up 
brief personal conversations); 

 

 

Figure 2. GRACE Software Architecture Diagram 



5.  If requested, perform volunteer tasks as time 
permits, such as “guarding”  a room or delivering 
an object to another room; 

6.   Get to the conference room on time, using map 
received in step 3.  This may involve riding an 
escalator or elevator. 

7.   Make a two-minute presentation about its own 
technology, and answer questions.  

For our first year of the Challenge, we decided to do all of 
the subtasks except #4 (schmoozing) #5 (volunteer duties), 
and having the robot itself answer questions from the 
audience. In addition, the human interaction in #2 was 
limited to interaction with one person, a student who 
worked with the team that summer.  In future years, we 
will expand the scope to include all subtasks and enable 
arbitrary conference participants to interact with the robot. 

The next sections describe in more detail the major 
subsystems for each of the Challenge tasks. 

4.1 Getting to the Registration Area 

GRACE must start at the entrance to the conference center 
and find then the registration area by interacting with 
people. Remember that GRACE does not have a map until 
she reaches the registration desk. This part of the challenge 
is meant to demonstrate robot interaction with people.  

We endowed GRACE with the capability to interact with 
people using both speech and natural gestures, in particular 
to allow GACE to ask for, understand, and follow 
directions. Using TDL (described in Section 3), we created 
a finite state machine that allowed GRACE to maintain 
multiple goals such as using an elevator to get to a 
particular floor and following directions to find the 
elevator. 

We used an off-the-shelf speech recognition system, IBM’s 
ViaVoice, to convert from spoken utterances to text 
strings.  The text strings were then parsed and interpreted 
using Nautilus, NRL’s in-house natural language 
understanding system, [Perzanowski, et. al., 2002; 
Perzanowski, et. al., 2001; Perzanowski, et. al., 1998; 
Wauchope, 1994].  The output of this component is a 
logical form similar to standard predicate logic.  This 
representation is then mapped to a message, or a series of 
messages, which is then sent to other modules through an 
IPC interface. The mapping code was written in TDL and 
it, and the IPC interface, was developed specifically for the 
Challenge. 

The a priori top-level goal is to find the registration desk. 
Additional goals are created as GRACE interactions with 
people to determine the directions to the registration desk 
and intermediate locations on the way to the registration 
desk. To achieve a goal, we interleave linguistic and visual 
information with direction execution (see Figure 3).  If 

there are no directions to be followed, GRACE performs a 
random walk until a human is detected (for the Challenge 
this past year, human detection was done using a laser 
scanner; in future years, we will incorporate vision-based 
detection of people).  GRACE then engages the human in a 
conversation to obtain directions to the destination in 
question.  Simple commands, such as “ turn left”  and “go 
forward five meters,”  as well as higher level instructions, 
such as “ take the elevator”  and “ turn left next to the 
elevator”  are acceptable (note that in the Shaw Convention 
Centre, one needed to take an elevator down two flights 
from the entrance in order to get to the registration area).  
In addition, GRACE can ask questions such as “am I at the 
registration desk?”   and “ is this the elevator?”   The task is 
completed once the destination is reached, as determined 
by an explicit human confirmation or perception of the 
goal. 

Besides accepting speech input, GRACE can incorporate 
gestures, such as when a human points to a given location.  
Initially, we were planning on using stereo-based vision to 
track both people and their gestures, but this part of the 
software was not ready in time.  As a last minute backup, 
we developed a PDA-based interface, in which movements 

 
 

Figure 3. Direction Taking 



of the stylus on the screen were interpreted as directional 
gestures. 

Execution monitors run concurrently to ensure both safety 
and the integration of various required linguistic and 
sensory information. For example, an explicit STOP 
command can be issued if unforeseen or dangerous 
conditions arise. Also perception processing occurs 
concurrently with interaction, allowing the detection of the 
destination or a human to be interleaved with other 
information required to perform the task. 

Two types of direction can be given.  For a simple action 
command, such as “ turn left,”  we assume that the 
command is executed immediately, before execution of 
any other instructions.  The second type of command is an 
instruction specifying an intermediate destination, such as 
“ take the elevator to the second floor.”   In this case, an 
intermediate goal is instantiated (getting to the elevator), 
and the logic is recursively applied to the new goal (Figure 
4).  Once all the available directions have been executed 
and successfully completed, GRACE concludes that either 
she has arrived at the destination or additional information 
is required to reach the goal.  If GRACE perceives the 
destination before all the directions are executed, the 
remaining ones are abandoned, and she continues with the 
next goal. 

Thus, if GRACE asks a human bystander, “Excuse me, 
where is the registration desk?”  and the human responds, 
“Grace, to get to the registration desk, go over there 
<accompanied by a gesture>, take the elevator to the 
ground floor, turn right, and go forward fifty meters,”  the 
human’s input is mapped to a representation like the 
following: 

 
 Find Registration Desk: 
  Find Elevator (ground floor); 
   Go over there <gesture>; 
  Turn right; 

  Go forward 50 meters. 

Once GRACE has found the elevator, control is 
temporarily turned over to CMU’s elevator riding process 
(Section 4.2).  When GRACE determines that it is within a 
reasonably close distance to the registration desk, the find-
the-desk process is terminated and control is given to the 
process that approaches the registration desk (Section 4.3). 

4.2 Riding the Elevator 

As mentioned previously, the registration area in the Shaw 
Convention Centre is not on the same floor as the street 
entrance.  Our choices in addressing this were rather 
limited – stairs are out of the question, and escalators are 
no good either. The only viable alternative was to have 
GRACE ride the elevator (Figure 5). 

The first problem is to find the elevator itself. We assume 
that the system has brought the robot near the elevator and 
pointed it generally facing it. Thus, the laser should have a 
good view of the elevator, and the robot will just need to 
perceive the unique signature of the elevator doors in the 
laser readings and get itself lined up with the doors. For 
instance, given that the robot is positioned as shown in 
Figure 6, the system will see laser readings like those in 
Figure 7. 

While people can readily make out the shapes of the 
elevators in the laser points, having the robot find elevators 
is unfortunately a bit more involved. The algorithm that we 

 
Figure 4. Human giving directions to GRACE to find 

elevator  out of view to the r ight 

 

 
Figure 5. The elevator  in Edmonton 

 

 
Figure 6. The simulation environment 



developed to perceive elevators from laser scans is as 
follows: 

• Straighten out the view of the world 
• Find horizontal segments corresponding to 

bits of walls 
• Filter the segments to eliminate noise and 

impossible conditions 
• Merge small, adjacent segments into single 

segments 
• Use feature matching to find possible 

elevators 
• Filter out impossible elevators 

This process is iterative and constantly running. The robot 
starts by attempting to fit straight lines to points it sees. 
Using these lines, it comes up with a guess of how far off it 
is from facing the wall. It then “mentally”  rotates the 
points in the world and tries again. Fairly quickly, the walls 
slide into place, and the system can detect the characteristic 
shape of elevator doors. 

The system uses a feature-based recognizer to detect 
elevators.  Given the transformation of the input points, it 
is sufficient to consider only horizontal segments, within 
some parameterized tolerances for length and offset.  In 
general, the system looks for three characteristic shapes. 
The first shape is a standard elevator inset (Figure 8). 
Because elevators are generally of a certain width, but also 
have a deeper inset than office doors, the inset information 
can fairly reliably pick out an elevator from an office or 
conference room. The second two shapes are similar to the 
first, but with some information removed. While these are 
still valid elevator candidates, the robot would probably 
need to move around a bit to get a better view of the 
elevator to make a final determination.  When these 
patterns are applied to the input data of Figure 7, the 

system detects the two elevators shown in Figure 9. 

One difficulty is that some patterns that are not elevators 
can actually look similar to the patterns in Figure 8. For 
instance, Figure 11 illustrates two types of patterns that are 
not elevators. Note that, in practice, some patterns that 
initially look good (e.g., the two patterns on the right in 
Figure 8) may actually turn out to be bad patterns when 
more information is acquired (by moving around). 

After the robot detects an elevator, it gets into position and 
waits for the door to open. While the laser can often see 
several elevators simultaneously, the robot cannot safely 
move fast enough if a door opens too far away. Thus, the 
robot picks one elevator to wait in front of, and moves only 
if it later decides that a better elevator pattern is nearby. 
Specifically, it waits for a while and, after a timeout with 
no activity, searches and lines itself up again. 

Once it has chosen an elevator and moved in front of it, the 
robot waits for some time for the door to open. If the door 

opens soon enough (as shown by the laser readings), the 
robot navigates in and turns around. When it has 
determined (by human interaction or other means) that it is 
on the destination floor, it moves out of the elevator when 
the path is clear. 

 

Figure 7. Raw laser  points 

 

 
Figure 8. The three valid elevator  patterns 

 

 
Figure 10. The unusual pattern at the Challenge 

 

 
Figure 11. Two invalid elevator  patterns 

 

 
Figure 9. The system, fully settled, with two elevators 

discovered 



While the elevator-riding program worked well in testing, 
two main problems were encountered when we arrived in 
Edmonton. First, the area surrounding the elevator, and the 
elevator itself, were made primarily of laser-invisible glass 
(see Figure 5). To solve this problem, we discreetly put a 
single strip of stylish green tape all around the area, just at 
laser height. This neatly solved the problem and drew little 
attention from onlookers.  The second problem was that the 
elevator pattern on the entrance floor of the convention 
center was quite unusual. The elevator had a normal inset 
on its left, but abutted a long wall on its right (see Figure 
10). The solution was to adjust the feature-based 
recognizer to accept this pattern as a valid elevator.  
Clearly, though, this type of tweaking is not a general 
solution to the problem. 

With these problems solved, the elevator-riding portion of 
the Challenge went quite well.  However, there are a few 
issues still remaining. The most visible issue relates to the 
slowness of the error correcting actions. For example, 
when the robot is misaligned in the elevator, it waits for a 
long time before it decides to back up and try again. It 
should detect and recover from these kinds of errors much 
faster. Second, as pointed out above, a more general 
recognizer needs to be developed – perhaps one that uses 
both laser and vision.  Finally, the robot needs to be able to 
detect for itself when it is on the correct floor.  We are 
currently developing a sensor, based on an electronic 
altimeter, to determine which floor the robot is on. 

4.3 Finding the Registration Booth 

Once GRACE reached the registration area (Section 4.1), 
the next task was to move up to the registration desk.  This 
involved two related subtasks: (1) searching for and 
visually acquiring the sign indicating the registration desk; 
and (2) servoing to the desk guided by a visual fix on the 
sign.  The standard registration signs used at the Shaw 
Convention Centre, which were LCD displays, were too 
small and too dim to be seen by the robot’s cameras.  
Therefore, we provided our own bright pink registration 
sign (Figure 12). 

The Swarthmore Vision Module (SVM) [Maxwell et. al., 
2002] provided the vision software capabilities used for 
this task.  SVM is a general-purpose vision scheduler that 
enables multiple vision operators to run simultaneously 
and with differing priorities, while maintaining a high 
frame rate.  It also provides tightly integrated control over 
a pan-tilt-zoom camera, such as the Canon VC-C4 that was 
used on GRACE.   

The SVM library includes a number of vision operators, 
one of which (the color blob detector based on histograms) 
was used to find the pink sign above the registration desk.  
In addition, each vision operator can function in up to six 
different modes, including the PTZ_SET and LOOK_AT 
modes that were used with GRACE.  The PTZ_SET mode 
allows software external to SVM to set the position of the 
camera by designating pan, tilt, and zoom parameters.  
SVM does not independently move the camera in this 
mode.  In the LOOK_AT mode, SVM is given the 3D 
location of the camera and object to be tracked, and sets 
the camera to point at the object.  If the vision operator 
finds the object, SVM moves the camera to track it, within 
a limited region around the designated location. The 
software for servoing GRACE to the registration desk, 
including the interface to both SVM and the lower-level 
locomotion software, was written using TDL.  

Due to the configuration of the registration area at the 
Shaw Centre, GRACE was approximately 15-20 meters 
from the registration desk when she first reached a position 
to be able to see the registration sign.  The first phase of 
the task, searching for and finding the sign, was 
complicated by the configuration of the registration area.  
Although the pink sign was 0.5 by 1.0 meters in size, and 
designed to be relatively easy to find, at a distance of 15-20 
meters, with the camera’s zoom set to the widest angle (45 
degree field-of-view), the sign was only a few pixels in 
size and nearly impossible for SVM’s blob detection 
operator to find.  In order to achieve more robust sign 
detection, we increased the zoom (narrowing the field-of-
view to 5 degrees), resulting in a very meticulous, but 
slow, search process. During this phase, SVM was used in 
PTZ_SET mode, giving full control of the camera to the 
TDL code.  The shifting light levels in the registration area, 
due to time and weather changes, also caused some 
difficulties.  Histograms for the pink sign trained at a 
certain time of day often failed several hours later.  To 
ameliorate this problem, we trained the histograms 
immediately before the start of the Challenge. 

Once the registration sign was found, an approximate 
distance to the sign was calculated based on the blob 
elevation measure provided by SVM.  This, in turn, was 
used to calculate the 3D location of the sign in the robot’s 
global coordinate frame.  At this point, the robot oriented 
itself to the sign and began moving towards the registration 
desk.  The blob detection operator was now changed to 

 
Figure 12. The Robot Registration Sign 



LOOK_AT mode, providing robust tracking of the sign 
during movement.  SVM provided updates on the position 
of the sign in the pan-tilt frame of the camera; these were 
then translated into global coordinates by the TDL code, 
which provided both sign and robot location updates to 
SVM, as well as corrected the movement of the robot.  The 
TDL code also adjusted the zoom used by SVM – as 
GRACE’s distance to the sign decreased, the field-of-view 
of the camera was increased so as to maintain the entire 
sign within the image, thereby reducing the chance of 
losing the sign and producing more accurate estimates of 
the its location.  This part of the task was considered 
completed when GRACE reached a distance of two meters 
from the desk. 

4.4 Standing in Line 

Once GRACE was near the registration desk, she 
proceeded to register. First, however, she waited in line (if 
there was one), like any polite conference attendee. 
GRACE uses a combination of an understanding of 
personal space and range information to stand in line.  
GRACE uses the concept of personal space to understand 
when people are actually in line, rather than milling around 
nearby.  People standing in line will typically ensure that 
they are close enough to the person in front of them to 
signify to others that they are in line, while maintaining a 
minimum socially acceptable separation distance.  GRACE 
also uses this information to ensure that once in line she 
does not make others feel uncomfortable by getting too 
close to them. The algorithm is based on earlier work using 
stereo vision for detecting lines [Nakauchi & Simmons, 
2002]. 

GRACE uses the SICK scanning laser range finder to 
identify people and walls. Before each movement, a laser 
scan is performed.  Clusters in the range data are grouped 
into three categories: those that might be people, those that 
are likely walls, and other (Figure 13).  This classification 
is based on the shape of the cluster.   To identify people, 
the algorithm looks for a small cluster of data points (with 
a spread of less than ~50cm) or a pair of small clusters 
close together.  This simple heuristic incorrectly classifies 
a variety of objects that are not people as people, but these 
“ false positives”  are generally irrelevant in the context of 
standing in line to register for a conference. 

If a cluster is too big to be a person and the points in the 
cluster fall approximately along a line, the cluster is 
considered to be a wall.  Occlusions in the range data (as 
seen in Figure 13) are compensated for by comparing wall 
clusters to one another to determine if a single wall 
segment can explain them.  If this is the case, then those 
clusters are combined to provide a better estimate of the 
orientation and location of the walls. 

The “stand in line”  algorithm assumes that GRACE starts 
near the registration desk, and that the closest “wall”  is the 
front of the desk.  Once the closest wall has been found, 
GRACE rotates away from the desk and searches for the 
nearest person standing close to the registration desk.  This 
person is considered to be the “head of the line” .  Once the 
head of the line has been identified, the algorithm attempts 
to chain nearby people together using the notion of 
personal space.  Those that are too far from the person in 
front of them, or those who are not approximately behind 
someone in line, are considered to be not in line.  Once the 
line is found, GRACE moves towards the back of the line, 
intermittently checking for more people in line.  Once at 
the back of the line, GRACE moves to a position behind 
the last person.  At this point, GRACE only considers the 
person immediately in front of her, maintaining the 
personal space between the robot and that person.  Once 
near the registration desk, GRACE maintains a stand-off 
distance until the person in front leaves.  When there are no 
more people in front of GRACE, she drives to a set 
distance from the registration desk and then begins to 
register. 

4.5 Registering 

The objectives for this subtask were to develop an 
interaction system that was robust enough so that a 
(relatively) untrained person could interact with it and to 
present an interface that was natural enough so that the 
registrar and observers could interact with GRACE at least 
somewhat as they would with a human.  The specific task 
was for GRACE to obtain all the various registration 
paraphernalia (bag, badge, proceedings), as well as the 
location and time of her talk. 

 

 
Figure 13. GRACE’s perception of people in line 



Figure 14 illustrates the data and control flow for a typical 
interaction cycle with the robot.  A wireless microphone 
headset is used to acquire speech, which is then converted 
to text by ViaVoice.  ViaVoice has the ability to read in a 
user-specified BNF-style grammar, which it then uses to 
assist in speech disambiguation.  In fact, it will only 
generate utterances that are valid under the loaded 
grammar.  Obviously, there is an inverse relationship 
between the size of the grammar and the recognition 
accuracy of ViaVoice (when presented with valid 
utterances).  We built our own grammar to cover all the 
potential utterances we could think of within the given 
scope.  Since the breadth of interaction involved in 

performing the registration task is rather limited, we were 
able to achieve satisfactorily accurate recognition. 

ViaVoice transmits the utterances that it recognizes as 
strings over TCP in its own proprietary format.  NRL 
developed a module, called UTT, which listens for 
transmissions from ViaVoice and re-broadcasts them over 
IPC as “utterance”  messages.  UTT also has a text-based 
input mode, which is useful for debugging.  The text 
strings are then parsed by the utt2signal program.  
utt2signal performs the same basic function as Nautilus, 
but is significantly more simple and specialized. utt2signal 
is based on a Bison parser that was hand-generated from 
the ViaVoice BNF grammar.  It distills the utterances 
down to the primitives that we need to drive our interaction 

and transmits the appropriate signals to the “expression”  
process (see below).  In addition, utt2signal is responsible 
for dispatching any raw information gleaned from the 
utterances to the appropriate process.  For instance, if the 
registrar tells GRACE the location of her talk, utt2signal 
informs the navigation software of this.   

The “expression”  process controls the computer-animated 
face and the Festival speech generation software.  Users 
write interaction scripts that include facial expressions, 
quoted text, pauses, conditional operators, choice 
operators, and most basic math and logic operations.  The 
scripting language allows the definition of macros, which 
consist of basic face movements, utterances, non-face 
primitives  (such as pauses), and other macros.  Even more 

powerful is the ability to create and execute hierarchical 
finite state machines (see Figure 15).  The FSMs can 
execute actions when entering a state and can transition 
based on signals received from other processes (e.g., 
utt2signal – hence the name).  Figure 16 shows a small 
sample of the script  used for the registration task. 

 
Figure 14. Information flow for  the registration desk 

task 

 
Figure 15. Simplified FSM  for  the registration task 

 



# Exampl e of  expr essi on def i ni t i on 
#   Expr essi on def i ni t i ons ar e of  t he f or m 
# DEFI NE expr essi onName 
# {  say( " <ut t er ance>" )  
#   [ one or  mor e expr essi on macr os]  
#   [ l i p synchi ng macr os]  
# }  
# 
# For  exampl e:  
 
DEFI NE badgeYesPr ompt  
  {  say( " May I  have my badge pl ease?" )  
    [ dhappy2]  
    [ pause( 0. 129)  mm me mi  ma mm mi  ma msh mp me pause( 0. 079)  msh mn]  
}  
 
# Exampl e of  DFA /  FSM 
 
# I ncl usi on of  ot her  FSM and expr essi on def i ni t i on f i l es i s  
#   al l owed f or  maxi mum f l exi bi l i t y  
i ncl ude " r egi st er . f sm"  
i ncl ude " mut t er . pho. expr "  
 
# Def i ne t he i ni t i al  and f i nal  st at es of  a FSM 
BEHAVI OR- MACHI NE Mut t er Machi ne 
  i ni t i al  MM_Ent er  
  f i nal  MM_Fi nal  
 
BEHAVI OR MM_Ent er  
  # Tr ansi t i on i mmedi at el y i f  ei t her  of  t hese s i gnal s i s  r ecei ved,  
  #  even i nt er r upt i ng speech i n pr ogr ess 
  t r ansi t i on i nt er r upt ed " speech: r eset "  MM_Fi nal  
  t r ansi t i on i nt er r upt ed " cont r ol : st opMut t er "  MM_Fi nal  
  per f or m  
   [ # Ser i al i ze ever yt hi ng i n [ ] ' s  
    # Fi r st ,  choose somet hi ng t o say 
     CHOOSE(  
        mut t er 1,  
 mut t er 2,  
 mut t er 3) ,  
     pause( 2) ,  
     r emoveText Bubbl e,  
     s l owNor mal ,  
     smi l ey,  
     # Then,  choose how l ong t o wai t  
     CHOOSE(  
        pause( 5) ,  
        pause( 15) ,  
        pause( 30) )  
   ]  
   # Fi nal l y,  do t hi s  al l  over  agai n 
   # Thi s t r ansi t i on f i r es onl y when t he pr ecedi ng per f or m cl ause 
   #  has compl et ed 
   t r ansi t i on MM_Ent er  
 
# Ther e ar e no t r ansi t i ons out  of  t hi s  node,  t hus s i gnal i ng t he 
#  t er mi nat i on of  t he FSM 
BEHAVI OR MM_Fi nal  
  per f or m sl owNor mal  

Figure 16. Sample expressions and FSM ’s for  the registration desk task 



Since utt2signal abstracts out the actual parsing, the FSM 
can concentrate on the content, which decreases its 
complexity.  In addition, execution time scales well with 
the size and number of finite state machines. In the future, 
this will allow much more complex interactions to be 
driven without worrying about computational 
requirements. 

GRACE’s face (Figure 17) is one of the most important 
aspects of her ability to interact with humans.  It is used for 
both emotional expression and for simple gestures, since 
GRACE lacks any conventional manipulators.  The face is 
based on an implementation of the simple face in [Parke & 
Waters, 1996].  It incorporates a muscle-level model of 
face movement to allow semi-realistic face motions.  It 
accepts muscle and simple movement commands from 
expression; macros of these commands are built up within 
the “expression”  process to allow easy access to 
complicated expressions or gestures. 

Last, but not least, is GRACE’s ability to generate speech.  
We use a version of Festival that was modified to enable it 
to generate phonemes for a given utterance, which are then 
processed to extract lip-synching information. Festival 
performed admirably, overall, with two notable exceptions: 
it tends to speak in a monotone and cannot handle 
acronyms. While it is possible to embed pitch changes in 
strings sent to Festival, this was too labor-intensive to take 
advantage of this year, and does not tend to produce 
convincing speech, in any case.  Likewise, it is possible to 
embed phonetic pronunciations, to deal with utterances 
such as “AAAI.”    

There were a number of small, persistent problems with the 
interaction.  First, ViaVoice had trouble with short 
utterances, often misinterpreting them as numbers.  Since 
an utterance of just numbers was parsed as a statement of 
the time of GRACE’s talk, this could cause some 
confusion.  However, GRACE was able to recover from 
such mistakes, due to the structure of the driving FSM. 

The other problem had to do with the disambiguation of 
pronouns and other generic statements.  GRACE 
disambiguates such statements as “here you go,”  “no,”  or 
“you have it”  based on the latest prompt that she gave (i.e., 
what state of the FSM she is currently in).  However, if 
GRACE prompted the registrar and the registrar began to 
respond, but ViaVoice did not complete recognizing the 
utterance until after GRACE had timed out and begun the 
next prompt, GRACE would believe that a non-specific 
statement was about the new prompt, even if she has only 
said a syllable or two of it.  This obviously caused some 
problems, as the potential existed for her belief of the state 
of the world to get out of sync with reality, resulting in 
very unnatural interaction. 

4.6 Navigating to the Talk 

After registering, the Challenge robots are allowed to use a 
map to navigate in the building.  Ideally, the robots would 
actually read the map given to them.  GRACE, however, 
used a map that she had built previously and was saved on 
disk. The map was used to help GRACE make her way 

 
Figure 17. GRACE’s Face 

 
Figure 18. M ap built by GRACE of the Shaw 

Convention Centre 



from the registration desk to the talk venue. The map-based 
navigation task was comprised of three main technologies: 
map-building, localization, and navigation control.  

The evening prior to the Challenge event, GRACE was 
driven around the convention center. During this time, 
time-stamped odometry and laser range data were recorded 
to file. This data was then used to build a map through a 
process called scan matching [Lu & Milios, 1997]. The 
implementation of our scan-matching algorithm was 
adapted from a software package provided by Dirk Hahnel 
at the University of Freiburg [Hahnel et. al., 2002]. 
Generating a map from laser and odometry data is largely 
an automated process, although our implementation also 
allows the user to correct misalignments after the scan-
matching process.  The output of the map-building process 
is an occupancy grid map, shown in Figure 18. This map is 
89.4 x 10.8 m, with a resolution of 10cm/grid cell. The 
black pixels represent regions of space with a high 
probability of occupancy, such as walls, chairs, etc. 
Similarly, the white areas are regions of space with a low 
probability of occupancy. Not shown in this image are 
regions of space where no data could be collected (i.e., 
behind walls). 

GRACE uses a probabilistic approach to localization called 
Markov Localization. The localizer estimates a probability 
distribution over all possible positions and orientations of 
the robot in the map given the laser readings and odometry 
measurements observed by the robot. This probability 
distribution is approximated using a particle filter [Thrun 
et. al., 2000]. GRACE is initialized with an approximate 
starting position, and the distribution of particles evolves to 
reflect the certainty of the localizer’s position estimate. 

As GRACE moves, the probability distribution is updated 
according to: 
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where si is the pose at time i, ai-1 the last action, and oi the 
last observation. 

Navigation was performed using a two-level system. The 
low-level system uses the Lane-Curvature Method [Ko & 
Simmons, 1998] to convert commands in the form of 
directional headings to motor velocity commands. The 
high-level planner consists of an implementation of a 
Markov Decision Process planner [Burgard et. al., 1998; 
Konolige, 2000]. The planner operates by assigning a 
positive reward to the goal location, and negative reward to 
poses close to obstacles. The planner uses value iteration to 
assign a value to each cell; this value corresponds to the 
future expected reward of each cell, as in the following 
equation: 
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where R(si) is the immediate reward of robot pose si, and 
V(si) is the expected reward to be maximized. The planner 
extracts the maximum-likelihood path by choosing from 
the start state (the current pose of the robot as given by the 
localizer) successive states that maximize the expected 
reward. The directional command passed to the low-level 
controller is just the direction of the neighboring state with 
the highest expected reward. 

During execution of the planned path, the planner also 
integrates sensor information, based on the current pose 
estimate from the localizer, to make changes to the map. 
This allows the planner to compensate for small errors in 
localization and changes to the environment that could 
invalidate certain paths. 

4.7 Giving the Talk 

Once GRACE navigated to the lecture area (in the 
Exhibition Hall), she gave a talk about the technologies 
that comprised her.  GRACE’s talk-giving system is an 
attempt to scale behavior-based architectures directly to 
higher-level cognitive tasks.  The talk-giver combines a set 
of behavior-based sensory-motor systems with a marker-
passing semantic network, a simple parser, and an 
inference network, to form an integrated system that can 
both perform tasks and answer questions about its own 
ability to perform those tasks. It interfaces with the 
computer-animated face and Festival speech generation 
systems to do the actual presentation. 

The talk system is structured as a parallel network of logic 
gates and finite-state machines.  Inference rules in the 
system are compiled into a feed-forward logic network.  
This gives it circuit semantics: the inputs of the network 
monitor the truth-values of premises as generated by the 
sensory systems and the outputs of the network track the 
truth-values of conclusions in real-time as the premises 
change.  In effect, the entire rule base is rerun from scratch 
to deductive closure at sensory frame-rates.  Although this 
sounds inefficient, the rule engine can run a base of 1000 
Horn rules with 10 conjuncts each, updating at 100Hz (100 
complete reevaluations of the knowledge base per second), 
using less that 1% of the CPU.   Using a generalization of 
deictic representation called role passing [Horswill, 1998], 
the network is able to implement a limited form of 
quantified inference – a problem for previous behavior-
based systems.  Rules may be quantified over the set of 
objects in short-term memory, provided they are restricted 
to unary predicates (predicates of one argument).  

The talk-giving system implements reflective knowledge – 
knowledge of its own structure and capabilities – through 
two mechanisms: a marker-passing semantic network 



provides a simple mechanism for long-term declarative 
memory, while role passing allows variables within 
inference rules to be bound to behaviors and signals within 
the system.  The former allows the system to answer 
questions about its own capabilities, while the latter allows 
it to answer questions about its current state and control 
processes.   

The talk-giving system can follow simple textual 
instructions.  When a human issues a command such as 
“drive until the turn,”  its simple parser, which is formed as 
a cascade of finite-state machines, examines each 
individual word, binding the appropriate words to the 
appropriate roles.  In this case, the parser binds the dr i ve 
behavior to the role act i v i t y  and the t ur n? sensory 
signal to the role dest i nat i on.  When it detects a stop 
(e.g., a pause), it triggers the handl e- i mper at i ve 
behavior, which implements the rules: 

• If the signal bound to dest i nat i on is 
false, activate the behavior bound to 
act i v i t y . 

• If dest i nat i on is bound to a sensory 
signal and that signal is true, deactivate 
act i v i t y  and myself. 

• If act i v i t y  deactivates itself, also 
deactivate myself. 

Since this behavior is parameterized by other behaviors, 
we call it a higher-order behavior, in analogy to the 
higher-order procedures of functional programming 
languages.  Other examples are the expl ai n behavior, 
which walks a subtree of the semantic network to produce 
a natural language explanation of the behavior, and the 
demo behavior, which both explains and runs the 
behavior.  Role passing and higher-order behaviors are 
easily implemented using parallel networks of gates and 
finite-state machines, making them a natural choice for the 
kind of distributed, parallel processing environments often 
found on mobile robots.  They are implemented in GRL, a 
functional programming language for behavior-based 
systems that provides many of the amenities of LISP, while 
statically compiling programs to a network of parallel 
finite-state machines. 

To give a talk  (Figure 19), GRACE uses the Linksys 
wireless connection to a laptop to open a PowerPoint 
presentation, reads the text of each bullet-point, and uses 
keyword matching to find an appropriate node in its 
semantic network.  It uses a novel distributed 
representation of a discourse stack to resolve ambiguities, 
using only SIMD marker-passing operations.  Having 
determined the node to which the bullet-point refers, 
GRACE uses spreading activation to mark the subtree 
rooted at the selected node as being relevant.   She then 
discusses the topic by continually selecting and explaining 
the “highest priority”  relevant, unexplained, node.  

Priorities are computed off line using a topological sort so 
that if topic A is required to understand topic B, A will 
always have higher priority. 

Continually reselecting the highest priority, relevant, 
unexplained node using circuit semantics gives GRACE 
the ability to adjust its patter in response to unexpected 
contingencies. Although the current system doesn’ t make 
much use of this capability, we intend to make extensive 
use of it in next year’s system. If, for example, GRACE 
had to maneuver its was around a bystander in the process 
of demonstrating its navigation system, it might insert a 
digression about social interaction and the need to say 
“excuse me.”   When, later in the talk, it came to the section 
on social interaction, it would realize it had already 
discussed the topic and simply make reference to its earlier 
discussion. It also allows the robot to cleanly respond to, 
and return from, interruptions without replanning.  
However, such topic shifts require the generation of 
transition cues such as “but first …”  or “getting back to 
…”.   The talk code detects these abrupt topic shifts by 
tracking the current semantic net node, its parent node, and 
the previous node and parent.  By comparing these, the 
system can determine whether it has moved locally up, 
down, or laterally in the hierarchy, or whether it has made 
a non-local jump to an unrelated node.  It then generates 
the appropriate transition phrase. 

The talk-giver is far from fluent.  It is not intended to 
demonstrate that behavior-based systems should be the 
implementation technique of choice for natural language 
generation.  Instead, it shows that parallel, finite-state 
networks are much more powerful than previously 
believed.  Moreover, by implementing as much of a robot’s 
control program as possible with these techniques, we get 
efficiency, easy parallelization, and flawless 
synchronization of the knowledge base with the 
environment. 

 
Figure 19. GRACE gives a talk 



5. Discussion and Summary 

On Wednesday July 31, GRACE attempted the AAAI 
Robot Challenge, in front of hundreds of interested 
onlookers and the media.  GRACE successfully completed 
each of the subtasks described above, with a minimal 
amount of extraneous human intervention.  GRACE took 
about 60 minutes to travel from the entrance of the Shaw 
Convention Centre, down the elevator, to the registration 
desk, and then to the lecture area in the Exhibition Hall.  
This compares to about 20 minutes taken by the other entry 
that attempted the complete Challenge – the CoWorker 
built by iRobot – but that robot was remotely teleoperated 
by a person in the convention center. 

While each of the subtasks was successful, and GRACE 
successfully completed an end-to-end run, each subtask 
also demonstrated need for improvement.  Probably the 
most critical problem was based on our use of ViaVoice 
for speech recognition.  ViaVoice has trouble with 
background noise and stress in the speaker’s voice.  
Although we have found that someone who has worked 
regularly with ViaVoice can achieve high recognition rates 
using our large vocabulary and grammar, new users in 
stressful situations can have greatly reduced recognition 
rates. A Ph.D. student who came to NRL for the summer to 
work on the GRACE project did the interaction during the 
challenge. With each misunderstood utterance, the level of 
stress in the student increased (particular with the very 
large crowd of onlookers and press), resulting in yet lower 
recognition rates. To try and remedy this, we are in the 
process of evaluating Sphinx for speech recognition (see 
http://www.speech.cs.cmu.edu/sphinx). This might also 
enable us to move to an on-robot microphone system, 
which would eliminate the need for the speaker to don a 
wearable microphone.  This would enhance GRACE’s 
appearance as an independent entity and enable random 
interaction. 

While the human-robot interaction (aside from the speech 
recognition) worked relatively well, there were areas for 
improvement.  For instance, gesture recognition, which 
works on the NRL robots, was not successfully integrated 
in time for GRACE.  As a fallback position, a PDA device 
was programmed to allow the human to “point”  a direction 
on its screen. However, this interface failed to start 
properly at the beginning of GRACE’s run.  Without the 
ability for the human to give gestures, the resulting 
interaction was closer to “verbal teleoperation.”   We 
expect to have full gesture capability nest year. 

In addition, NRL has developed an ability to talk about 
semantic entities in the environment (e.g., “ turn left down 
the next corridor” ), but the ability to recognize these 
features is not yet integrated on GRACE.  These 
capabilities would make interaction much more natural.   

For the elevator-riding task, the robot needed to have a 
person hold the elevator doors open, in order to give it time 
to enter and exit before the doors closed. Part of this was 
due to the fact that the robot did not recognize changes to 
the environment fast enough.  Also, the robot also did not 
have any way of determining which floor it was on (we are 
working on this by developing an electronic altimeter – see 
Section 4.2). 

Visual servoing to the registration desk suffered from 
several problems. First, as described in Section 4.3, 
changes in lighting could cause the recognition algorithm 
to fail, and so the system had to be retrained on a periodic 
basis.  Second, when the robot was far away, the sign 
appeared too small to be readily identified; but, zooming in 
gave a very small field of view, which slowed the search 
for the sign considerably.  To deal with this, we are 
considering a multi-scale approach, where the robot first 
does a coarse scan at a wide field of view, and then checks 
possible sign locations more thoroughly by zooming in.  
Finally, if the robot moved quickly, the tracker often lost 
sight of the sign.  This can also probably be addressed by 
adjusting the zoom. 

During testing, the standing in line code was very reliable.  
During the Challenge itself, the robot barged into line, 
nearly hitting one of the judges.  The cause was traced to a 
bug in the software that determined the robot’s trajectory 
to the end of the line.  The software worked in many tests, 
but later it was determined that it only worked for lines of 
one or two people (the maximum we had tested on), but at 
the Challenge there were five people in line.  Needless to 
say, that bug has since been fixed.  The task of registering 
had problems with ViaVoice, as described above.  Also, 
that task used a different grammar from the “getting to the 
registration area”  task.  During the Challenge, we forgot to 
load the correct grammar, which meant that the robot had 
very little chance of interacting correctly.  Fortunately, this 
was noticed, and corrected, part way through the task. 

The navigation part of the task suffered a bit from getting 
lost. The causes were twofold: 1) the environment had 
changed significantly from when the map was built the 
night before (extra tables were set up for food), and 2) 
there were hundreds of people around the robot, making it 
hard for the sensors to see the walls and other static 
structures that had been mapped.  Unfortunately, some 
human intervention was needed to relocalize the robot.  We 
need to look much more carefully at how to do map-based 
navigation in environments that are very different from 
when the map was first made.  Finally, the talk-giving task 
worked flawlessly.  For next time, however, we plan to 
have the robot demonstrate various aspects of itself – this 
is currently supported in the talk-giving software, but there 
was not enough time to develop the demonstrations 
themselves and integrate them into the talk. 



Our plans for the 2003 Challenge are threefold.  First, we 
will work to make the current capabilities much more 
robust.  Second, we will integrate the capabilities more 
tightly.  In particular, we will have the robot itself 
determine when to transition between subtasks.  Third, we 
will add new capabilities.  We intend to have vision-based 
and stereo-based people detection and tracking, people 
following, gesture recognition, nametag reading, and face 
recognition.  We plan to incorporate capabilities for the 
robot to “schmooze”  with other participants and to answer 
its own questions after the talk.  We would like to have the 
robot perform its own crowd control.  In the hardware 
domain, it would be desirable to add more physical 
flexibility to GRACE’s face, such as putting the screen on 
a pan/tilt unit.  Finally, there is the possibility of bringing 
another robot, and have a team trying to attend the 
conference. Imagine two attendees who arrive together, 
looking together for the registration area, or one that 
arrives earlier and meets the second near the entrance and 
tells them what they have learned about the location of the 
registration desk.  We are also considering having one 
robot handle crowd control for the second robot! 

Our biggest lesson learned was the amount of work 
required to achieve interaction among the different 
modules. The bulk of our work this first year was in getting 
the interfaces defined and working.  Yet we believe that we 
have to go much further next year.  In particular, we had 
several failures occur due to having to manually start 
software when moving from one part of the challenge to 
the next.  We will be developing a program that will 
automatically start each module.  This should result in less 
human errors. 

While we did accomplish mush this year, we are looking 
forward to adding a significant amount to GRACE for next 
year.  In addition to the automatic starting of processes, we 
expect to have tighter interaction among components, 
different and more robust human interactions, gesture 
recognition, better recognition of humans using multiple 
techniques, and possibly even the ability for the robot to 
demo itself during its talk and answer simple questions.  
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