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ABSTRACT
We are interested in the problems of a human operator who is
responsible for rapidly and accurately responding to requests for
help from an autonomous robotic construction team. A difficult
aspect of this problem is gaining an awareness of the requesting
robot’s situation quickly enough to avoid slowing the whole team
down. One approach to speeding the initial acquisition of situa-
tional awareness is to maintain a buffer of data, and play it back for
the human when their help is needed. We report here on an exper-
iment to determine how the composition and length of this buffer
affect the human’s speed and accuracy in our multi-robot construc-
tion domain. The experiments show that, for our scenario, 5 - 10
seconds of one raw video feed led to the fastest operator attainment
of situational awareness, while accuracy was maximized by view-
ing 10 seconds of three video feeds. These results are necessarily
specific to our scenario, but we feel that they indicate general trends
which may be of use in other situations. We discuss the interacting
effects of buffer composition and length on operator speed and ac-
curacy, and draw several conclusions from this experiment which
may generalize to other scenarios.

Categories and Subject Descriptors: I.2.9 [Artificial Intelligence]:
Robotics – Operator interfaces; H.1.2 [Models And Principles]:
User/Machine Systems – Human factors

General Terms: Experimentation, Human Factors

Keywords: Situational Awareness, User Study, Sliding Autonomy,
Case Study

1. INTRODUCTION
It is impossible to create a robotic system that can operate in an

open, dynamic environment with zero failures. There are always
unexpected error conditions, which the robot’s programmers were
unable to anticipate. In such cases, a purely autonomous system is
left with little recourse: it can attempt a few generalized recovery
strategies, but there will always be corner cases that prevent task
completion.
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Rather than attempting to account for every possible error con-
dition, and accept a terminal failure if we encounter an unexpected
case, we believe that autonomous robots or teams of robots should
instead be designed to recover from common failures and merely
recognize, at least in a general sense, rare failures. Most failures
can be detected at some level, such as exceeding a limit, but suffi-
cient information for automated recovery is often not available.

Simply detecting errors is of little use to the autonomous system
without a way to translate the error into a recovery method. Since
it’s impractical to do so in code for all conceivable sets of recovery
methods and errors, we solve this dilemma by involving one or
more humans in the team. When a robot believes it is in trouble,
but has no way of recovering on its own, it may request help from a
human team member. This takes advantage of the strengths of the
autonomous system, such as its ability to quickly and accurately
perform routine, repetitive, or long-duration tasks, while using the
flexibility of the human partner on an as-needed basis to fill in the
gaps in the autonomous system’s capabilities.

Our domain is multi-robot construction teams, which is rife with
opportunities for coordination and collaboration between robots
and humans. The current scenario involves three heterogeneous
robots working together to assemble a square structure out of four
beams and four connecting nodes. The nodes, mounted on wheeled
bases, must be braced before a beam may be connected. This re-
sults in three natural roles within the team: a bracing robot, a robot
to perform the fine manipulation necessary to connect a beam to a
node, and a third to provide a mobile sensor platform.

Within our construction domain, a human teleoperator is avail-
able to help the system as needed. We have previously [4] com-
pared teleoperation, autonomy, and two mixed (Sliding Autonomy)
approaches. The two mixed approaches varied as to whether the
human was allowed to constantly monitor the system’s progress
and proactively assume control. We investigate here the case in
which the human is occasionally asked to provide assistance while
they are performing other unrelated tasks. The challenge for the
human in such a scenario is to swiftly attain situational awareness
when they are called upon to intervene. By situational awareness,
we mean an understanding of: the robotic team’s and workspace’s
current state, how far the team has progressed in the assembly pro-
cess, what caused the team to ask for help, and what is an appropri-
ate next action. There are clearly degrees of situational awareness:
knowing that the robot is in the assembly area is clearly different
than knowing its precise position relative to the current beam. For
the purposes of this paper, we define situational awareness as suf-
ficient understanding of the robot’s (or robots’) state to formulate
a short-term plan of action. This will vary somewhat on a case-



by-case basis, but in general will only involve comprehension of
the spatial relationships between the small set of objects and robots
directly involved in the current task.

Attaining situational awareness in this scenario is nontrivial, since
the operator doesn’t continually monitor the team’s progress while
fulfilling their other responsibilities. It is often quite difficult to
determine the problem which triggered the request for help by sim-
ply observing the team’s current (static) state. For instance, in a
high-clutter environment the cause of the request for help may be
ambiguous due to limited camera angles and a lack of depth percep-
tion. While moving the robots could help to remove this ambiguity,
this may not be safe if they are in close proximity to obstacles. One
approach to helping the human safely attain situational awareness
is to provide a playback of data for some amount of time preced-
ing the request for help - in other words, maintain a buffer of the
system’s recent activity and display it to the human when help is
needed. This helps remove some of the scene’s ambiguity, and also
provides information about the team’s recent actions, which may
further help in determining the current problem.

We have conducted an experiment in order to investigate how the
length of this buffer and different combinations of camera angles
and synthesized views affect the human’s acquisition of situational
awareness within our scenario. The experiment showed that for
our scenario 5 - 10 seconds of one raw video feed yields the fastest
response from users, while 10 seconds of three video feeds results
in the most accurate responses. While these specific results are
necessarily tightly tied to our scenario, we feel that they indicate
trends which may be of use in other Sliding Autonomy scenarios.

2. RELATED WORK
There has been a significant amount of work over the years on

helping humans maintain situational awareness in a number of dif-
ferent scenarios. Much initial work focused on maintaining the sit-
uational awareness of pilots [3] [9], while more recent research has
investigated the maintenance of situational awareness during tele-
operation of search and rescue robots [12]. The primary focus of
the existing situational awareness literature is on maintaining the
awareness of an operator who is in continual control (or at least
is continually monitoring) a robot or robots. This is in contrast
to our domain, in which we are interested in helping the operator
repeatedly attain situational awareness without monitoring the sys-
tem between interaction episodes.

One model of situational awareness applicable to our domain is
that proposed by Endsley [1] [2]. That model defines three levels
of the situational awareness: Level 1 (perception of environmental
elements) consists of basic perception of cues: an operator who has
achieved Level 1 situational awareness has successfully compre-
hended the bits and pieces of information available to them. Level
2 (comprehension of current situation) integrates the data perceived
in Level 1 and, once achieved, allows the human to derive task-
relevant meaning from the raw data perceived by Level 1. The final
stage of situational awareness, Level 3 (projection of future states),
involves the projection of the future state of the system. Operators
who have achieved Level 3 situational awareness are able to pre-
dict future system behavior, including the system’s likely reaction
to their input, from current events and dynamics perceived in Lev-
els 1 and 2. In our experiment, we attempt to determine how long
it takes subjects to attain Level 2 situational awareness when pro-
vided with differing sources and amounts of historical information.

Teleoperation systems enhance operator situational awareness in
different ways. Many systems provide multiple viewpoints through
both external views and views from cameras on the robot(s) them-
selves. Wang and Milgram [11], however, have tried to limit the

mental workload required to reconcile those two views by creating
a new type of viewpoint. Their view, called a “tether” view, is a
display that is neither external nor robot-oriented; instead, it com-
bines the two by simulating how the scene would look from a kite
flying behind the robot in the workspace.

In addition to viewpoint, situational awareness is also improved
by studying how spatial information of the workspace should be
presented to the operator. Lasswell and Wickens [7] investigated
ways to improve information displays for pilots in order to improve
taxi-way safety and traffic flow. They showed that a 3-dimensional,
perspective-view of the workspace reduced lateral tracking errors,
but that a 2-dimensional, plan-view of the workspace supported
greater taxi speeds. This suggested that by giving the 2D display a
wider field of view, operators would be able to get a better feel for
their situation as well as benefit from the advantages of a plan-view
of the workspace. Presumably, techniques such as this that are used
to provide a greater degree of situational awareness could also be
applied to the situations we are looking at, in which the operator is
attempting to gain, not maintain, awareness of the workspace.

A different area of science pertinent to our work is that of cog-
nitive psychology. When presented with multiple visual displays,
the question arises of how much information operators can process
and remember at a time. The cognitive psychology community has
done relevant work studying the limitations of human visual work-
ing (short-term) memory [10]. Studies have shown that working
memory has severe limitations, and can only hold a few pieces of
information at a time. What exactly limits how much information
working memory can hold is still under investigation; possibilities
include the number of objects attended to, the number of features
those objects have, and so forth. Regardless, this research could be
very helpful in the design of operator interfaces, as it is important
to provide operators with enough, but not too much, information.

3. SITUATIONAL AWARENESS AND
SLIDING AUTONOMY

We now provide an overview of the form of Sliding Autonomy
we investigate in this paper and discuss our approach to helping
the human attain situational awareness. As part of the Sliding Au-
tonomy discussion, we examine how the autonomous component
decides when to request help from the human component and how
an understanding of a human’s ability to quickly attain situational
awareness can affect this decision. In order to arrive at an interface
which will help the human swiftly achieve situational awareness,
we look at the limitations of the current approach and some of the
questions that arise when designing an interface for this purpose.

Our current research deals primarily with Sliding Autonomy,
which addresses the question of how best to meld the complemen-
tary talents of human teleoperators and autonomous control sys-
tems via various combinations of relative autonomy. On one end of
the autonomy spectrum lies pure teleoperation, in which the human
teleoperator is in complete control of every aspect of all robots. In
general, teleoperation is reliable, but is slow and imposes signif-
icant workload on the human operator. The other extreme is pure
autonomy, in which the robotic team acts on its own with no human
involvement whatsoever. Although pure autonomy is often much
faster than teleoperation, it is significantly less robust, especially in
dynamic domains where all failure modes cannot be determined a
priori [4].

Many robotic systems that allow human involvement are limited
to these two opposing modes - teleoperation and pure autonomy -
with few, if any, options in between. Our goal is a system which
melds the respective benefits of teleoperation and pure autonomy



while avoiding their associated shortfalls. In this experiment, we
examine a Sliding Autonomy mode in which the autonomous sys-
tem requests help as needed from a human performing other, unre-
lated, tasks.

When operating in this mode, the autonomous system maintains
models of both its own past performance and any available human
teleoperators’ skills. These models allow the autonomous system to
decide whether to request help from the human due to its belief that
the human will be more efficient. In addition, a robot may request
help if it believes it will be unable to recover from a detected fail-
ure. The goal of this mode of operation is to allow the autonomous
system to increase its robustness by taking advantage of the hu-
man’s skills and flexibility at need while not unduly loading them.
The net effect is a mode that is more reliable than pure autonomy
and faster than pure teleoperation. The human may also attend to
other tasks while the autonomous system is operating, since they
do not need to constantly monitor the team.

Here, we investigate how the composition and amount of data
presented to the operator affect their ability to swiftly and effi-
ciently acquire situational awareness when transitioning from an
unrelated task. Addressing this problem yields two benefits: a more
efficient user interface, which allows the human to attain situational
awareness more quickly; and a more accurate model of how long
this acquisition will take, which allows the autonomous system to
make more informed decisions about whether to request assistance
with a particular tasks. These benefits combine to yield a more
efficient human-robot team.

The standard operator interface in this situation is identical to
that of a full-time teleoperator: it reflects the current state of the
robots, and provide information about the workspace in a variety
of forms. However, such an approach suffers from two major prob-
lems when the operator has not been monitoring the team prior to
the request for help. The first is its stationary nature: a limited,
static view of the world results in ambiguity about the spatial re-
lationships between objects and robots, especially in a high clutter
environment with limited camera angles. The canonical solution is
to shift a robot’s viewpoint. However, if the robot is near obstacles
which the human is unable to accurately localize, such uninformed
motion could prove dangerous. A static view of the world also ham-
pers the acquisition of situational awareness. As discussed in [2],
time and the perception of temporal dynamics greatly influences
the acquisition of Level 2 and 3 situational awareness.

A second limitation of a “traditional” teleoperation interface in
this scenario is its lack of history and its lack of support for deter-
mining the intentions of the autonomous agents. One aspect of at-
taining situational awareness is determining what action the robots
were attempting to perform when they asked the human for help.
This is often not obvious from a static view of the world: for in-
stance, if a manipulator is in contact with an object, is it having
trouble picking it up, or accurately placing it?

One approach to easing the acquisition of situational awareness
is to maintain a buffer of information, which can be played back
to the human when operator assistance is required. This allows the
human to “get up to speed” by allowing them to view information
about the system as it approached the state that triggered the request
for help. This makes it possible to both infer the robot(s) intentions
and avoid needless motion through potentially hazardous terrain.
The two obvious questions for implementing such a buffer are (1)
what data is most relevant to attaining situational awareness, and
(2) how much data it should buffer.

One may be tempted to include all available data in the interface
on the theory that more data results in greater information intake by
the human. However, the human brain’s ability to winnow informa-

tion from chaff is distinctly finite, and the operator will quickly be-
come overwhelmed [2]. Not only are the human’s resources finite,
but the ability of the robots to store and transmit large amounts of
data is also restricted, especially when the robots are not collocated
with the human. Bandwidth is always limited, and serves as a firm
upper cap on the amount of data which may be presented to the
human.

Alternatively, the human could be given their choice of display
elements. However, since the human cannot know which are the
most useful data streams a priori and the system cannot know which
streams the human will choose, performance would suffer greatly.
The human would often not have the proper data available, and the
system would be unable to perform effective caching due to band-
width limits, resulting in large delays before the human would be
able to intervene.

The question of how much data to buffer is also complex. In
some scenarios, “key events” will exist for some or all error con-
ditions, which, when observed in their entirety, will allow the op-
erator to identify the error. In such situations, it is important that
the data buffer contain the entirety of these events, and the length
of the buffer will not be correlated to accuracy.

However, it is often the case that the key events are not observ-
able. In such situations, the operator must observe a playback of
the evolving system to determine which, if any, error has occurred,
as the signs are often subtle and ongoing. If observable key events
do not exist in a scenario, the length of data buffer is of vital im-
portance, and the best length is a function of the scenario itself,
the speed of the robots, and the human’s ability to attain situational
awareness. The vast majority of the examples used in this experi-
ment did not contain observable key events.

While it may appear that a longer buffer will result in a greater
degree of situational awareness, and thus a faster response time, this
is not necessarily the case. We hypothesize that there is a point at
which longer playbacks provide no more useful information about
the problem at hand. In addition, when considering efficiency, one
must take into account not only how long it takes the human to react
after viewing the playback, but also how long is spent watching the
playback. There may be a tradeoff between playback time and time
exclusively spent thinking about the situation, and it is possible
that the optimal overall reaction time is not necessarily the case
resulting in the minimum time devoted exclusively to cognition.

Although the specific answers to the questions of data relevance
and buffer length are in part task- and domain-dependent, there are
some principles that apply to a range of similar domains. In order to
investigate these principles, we evaluate them using our own con-
struction domain and robot team, and discuss our specific results
and how they may apply to other similar scenarios.

4. EXPERIMENTAL DESIGN AND
METHODOLOGY

We conducted an experiment to assess how much and what types
of information shown to a human operator correlate with how quickly
the operator is able to gain situational awareness. In the experi-
ment, the subjects were asked to observe a set of prerecorded data
streams and then determine both why the autonomous system re-
quested assistance and identify an appropriate action. Between tri-
als, we varied which data streams were available to the subject, as
well as the streams’ length. When not responding to a simulated
request for help, the subject performed a concentration-intensive
distractor task to simulate a multitasking operator.



Figure 1: The Mobile Manipulator (top left), Roving Eye (top
right), RoboCrane (bottom left), and the completed structure
(bottom right).

4.1 Scenario and Robots
The assembly scenario used in this experiment involves four beams

and four planarly compliant nodes that are assembled into a square
structure (Figure 1). In order to weakly simulate conditions in
space, the nodes are supported by casters that roll easily along the
floor. Thus, bracing of the nodes is required before the end of a
beam may be inserted into the node.

We have decomposed this scenario into tasks that can be com-
pleted by agents fulfilling three different roles: an agent that pro-
vides information about the state of the world (the Roving Eye; Fig-
ure 1), an agent that braces the nodes during docking (the Crane;
Figure 1), and an agent that does the actual manipulation and inser-
tion of the beams into the nodes (the Mobile Manipulator; Figure
1). Neither the Crane nor the Mobile Manipulator possess any ex-
trinsic sensors and must rely on positional data transmitted to them
by the Roving Eye, which is equipped with stereo cameras.

4.2 Interface
The information streams available to the human include three

video feeds and one synthesized “technical drawing”-style visual-
izer (Figure 2). The video feeds are from one of the Roving Eye’s
cameras, a fisheye camera placed in the Crane looking down onto
the workspace, and a stationary external camera placed outside the
workspace looking towards the structure. The Roving Eye’s stereo
pair is also used to estimate the relative positions of the various ob-
jects in its field of view [5]. This information is in turn used by
the visualizer to display the relative positions of the beam and node
from above and in front of the beam ((4) in Figure 2). This provides
data that is at times not otherwise available to the user, due to the
lack of depth perception from single cameras. However, as a result
of the data’s noisiness and the autonomous system’s reliance on it,
the visualizer is never used alone, in order to give the operator an
opportunity to recover from errors resulting from data corruption.
Neither the camera on the Crane nor the external camera are uti-
lized by the autonomous system.

Figure 2: The subject interface, including three video streams
(the Roving Eye’s cameras (2), an external camera (3), and a
Crane-mounted camera (4)), a synthesized view of the beam
and node (the visualizer) (1), and the error categorization dia-
log (5). The “minimal video” conditions incorporate (2), while
the “maximal video” conditions incorporate (2), (3), and (4).

4.3 Experimental Design
Our two experimental variables are the composition and length

of the data feed that is presented to the subject. We chose to in-
vestigate four lengths (0, 5, 10, and 20 seconds) and four different
combinations of available data (see Figure 2):

1. Minimal video: Roving Eye video only (Min vid)

2. Minimal video + visualizer: Roving Eye video and the visu-
alizer (Min vid + viz)

3. Maximal video: Roving Eye, Crane overhead, and external
videos (Max vid)

4. Maximal video + visualizer: Roving Eye, Crane overhead,
and external videos, as well as the visualizer (Max vid + viz)

This yields a total of 16 different test conditions. Since all pos-
sible combinations of data feeds could not feasibly be investigated,
these combinations were chosen to allow the comparison of min-
imal data (1, above) against maximal data (4, above), as well as
several points in between. They are then evaluated in conjunction
with playback time of varying lengths, ranging from static feedback
(the 0 second playback condition) to 20 seconds of feed.

The example requests for assistance used in the experiment were
drawn exclusively from the task of docking one end of a beam with
a node. This is a precise manipulation task performed by the Mo-
bile Manipulator and is rich in potential errors. This provided a
large variety of situations in which the robots could request help,
lowering the probability of the subject randomly guessing the cor-
rect answer. In addition, this placed all the examples within a subset
of the domain, which made training subjects much more tractable.

During each trial, the subject was asked to identify why the robot
requested help during the observed docking. The errors fell into
four broad categories: false alarms, obscurements, interference by
non-target objects, and interference by the target node. False alarms
occurred when a successful docking had been incorrectly labeled
an error by the system. An obscurement error occurred when the
Roving Eye lost sight of the beam for any reason. Interference by
non-target objects consisted of the beam hitting either another (non-
target) node or the Crane’s end effector. Finally, the beam could
have become stuck in an undocked position on the target node, as
a result of an error in the Roving Eye’s data or the Mobile Manip-
ulator approaching the node along an erroneous vector.



4.4 Experimental Procedure
The experimental procedure was a combination of training and

testing. The subject’s training began with reading a written overview
of the task and hardware at hand, with the experimentor answering
any questions.1 The subject was then shown one example of each
of the seven types of errors via the graphical interface (Figure 2),
using the maximal video + visualizer and 20-second playback con-
dition. The experimentor discussed each example with the subject
in order to ensure the subject understood each error’s characteris-
tics. These training examples were not used during the test phase.
If the subject did not feel fully trained by this point, the same train-
ing examples were repeated until the subject and experimentor felt
the subject grasped the problem.

After training (which typically took 20-30 minutes), the follow-
ing test procedure was used. The subject first played a Tetris-like
game requiring significant concentration [8] for a time chosen from
a normal distribution centered at one minute, with a standard devia-
tion of 5 seconds. After this time had elapsed, the subject’s display
was switched to the interface (Figure 2), with the current condi-
tion’s data streams visible. The length of playback associated with
the current condition was immediately shown, with all displayed
data streams synchronized. Once playback was complete, all inter-
face elements were frozen on the final frame of the playback buffer
and the classification entry dialog was displayed (note that this pre-
vented the subject from choosing an error prior to the completion
of playback). As soon as the subject selected one of the seven er-
ror classifications, they were returned to the distractor task. The
actual time elapsed during playback and the time taken to classify
the error. The time needed for playback plus error classification is
a fairly tight upper bound on the time needed to attain Endsley’s
Level 2 situational awareness (comprehension) [2].

Each user was tested on four of the 16 conditions, with six ex-
ample errors chosen per condition. Each set of six examples was
chosen randomly without replacement from a pool of 29. In order
to ensure that no error type occurred more than once per test condi-
tion, when an example was picked and removed from the pool, all
other examples of the same type were marked. Marked examples
were removed from the pool until the six examples for the current
test condition were selected, after which they were unmarked and
returned to the pool. The entire experiment, including training and
testing phases, consumed an average of 1.5 hours per subject.

To account for ordering effects, we applied Latin squares to both
effects and ran the combined conditions. A Latin square is a sta-
tistical technique which allows experimentors to test effects while
controlling for two other known sources of variation (here, inter-
subject variability and ordering effects). Since each subject was
evaluated under four test conditions, 16 subjects were required to
cover all the possible orderings. We evaluated 32 subjects in all.
Our subjects were students at Carnegie Mellon. None had prior ex-
perience with the task, and their backgrounds spanned the Carnegie
Mellon student population.

5. RESULTS
During the experiments, we recorded the time it took subjects to

classify each example, both including and not including the time
it took them to watch the data feed, as well as the accuracy of
their classifications. We define “response time” as the time between
when playback of the data stream finished and when the users clas-
sified the current error via the dialog box. We now analyze this data

1Since a significant portion of the training consists of interactions
between the experimentor and the subject, a single experimentor
conducted all the experiments, in order to avoid training bias.

Data feed
composition

Response time
Playback +
response time Classification

accuracyµ σ µ σ
Min vid 19.2 17.7 28.6 17.6 44.8%
Max vid 26.9 30.0 36.4 28.8 62.0%
Min vid + viz 20.4 16.5 29.8 16.3 53.6%
Max vid + viz 27.2 23.3 36.6 23.3 55.7%

Table 1: Error classification time (seconds) and accuracy
(probability of correct response) as a function of data stream
composition. Each row of this table contains data from all data
feed length conditions and comprises the entirety of the corre-
sponding data stream rows in Figures 3–5.

in the context of the 16 test conditions (4 available data feeds by 4
lengths of playback) using a univariate ANOVA test.

5.1 Data Feed Composition
The results show that the “minimal video” data feed condition

resulted in the shortest response and playback + response times
(Table 1) 2. However, there was not a statistically significant dif-
ference (at a 95% confidence level) between the minimal video and
minimal video + visualizer conditions in either case, according to
the Bonferroni 3 post hoc test (Table 2). The presence of addi-
tional video feeds appeared to be an important factor, as classifica-
tion times under both conditions incorporating maximal video were
significantly slower than either minimal video condition (Table 2).

While fewer data feeds appears to be an advantage when it comes
to eliciting a rapid response, this is not the case if one is concerned
with accuracy. As can be seen from Table 1, accuracy peaks at a
62% likelihood of a correct classification for the “max vid” data
feed composition. Note, however, that the only statistically sig-
nificant difference is between the max vid and min vid conditions
(Table 5). We may only draw the inference that additional video
increases accuracy. We hypothesize that the visualizer may make
up some of the lack of the min vid condition, while overloading the
operator in the max vid + viz case. However, these hypotheses are
only supported by trends, not statistically significant differences in
the data. We attribute the relatively low accuracies achieved by our
subjects to their unfamiliarity with the scenario and the low quality
of the video feeds. Note that at no time does accuracy decrease
below random choice (14.2%).

5.2 Data Feed Length
The results also confirmed our hypothesis that a longer video

playback time results in a shorter user response time (Table 3) (re-
call that we define “response time” as the time elapsed between the
end of the playback and the classification of the error). This trend
was true for each condition, and is illustrated in Figure 3. How-
ever, using a Bonferroni post hoc test, significance was not found
between the 5 and 10 or the 10 and 20 second conditions (Table 4).
This is not unexpected, as the data feed lengths are closely spaced.

These trends differ when we examine the playback + response
time data. Here, the 5 and 10 second playback conditions were
the fastest, with the 0 and 20 second playbacks taking significantly
longer (Table 3). We can see from Table 4 that the only insignif-
icant differences are those between 0 and 20 seconds and 5 and

2In this and the following tables, we use µ to indicate the mean and
σ to represent the standard deviation of the presented sample.
3This is one type of post-hoc test, used to examine whether there
are significant differences between individual categories, such as
minimal and maximal video.
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Table 2: Significance between data stream conditions from a
pair-wise Bonferroni post-hoc test at a 95% confidence level.
Significant differences are denoted by a bold ’Y’. Note that the
only two differences which are not significant are between the
two maximal video conditions and the two minimal video con-
ditions.

Data feed
length

Response time
Playback +
response time Classification

accuracyµ σ µ σ
still frame 35.0 26.5 37.4 26.5 42.7%
5 seconds 23.3 19.6 28.4 19.6 51.6&
10 seconds 18.7 21.3 28.8 21.3 58.3%
20 seconds 16.7 18.5 36.8 18.5 63.6&

Table 3: Error classification time (seconds) and accuracy
(probability of correct response) as a function of data feed
length. Each row of this table contains data from all data
stream composition conditions and comprises the entirety of
the corresponding data feed length rows in Figures 3–5.

10 seconds. This is unsurprising, as they represent the trough and
peaks of the data feed length x playback + response time curve.

Data feed length has a clearly salutary effect on accuracy, as can
been seen in Table 3. Unsurprisingly, increasing length results in
greater accuracy, with only the neighboring length categories show-
ing statistically insignificant differences (Table 5). This, when con-
sidered alongside the playback + response time trends, indicates
that a complex nonlinear tradeoff may be made between overall re-
sponse time and classification accuracy by the system designer or
the autonomous system.

5.3 Interaction Effects
The ANOVA test also revealed trends in the interaction effects

between the two experimental variables’ effects on response time,
with a significance of .083 and .084 in the response time and play-
back + response time cases, respectively. 4 Figures 3 and 4 illus-
trate these effects. The graph of response time alone (Figure 3)
suggests that the maximal video and maximal video + visualizer
conditions are more affected by video playback time than the other
data stream conditions. It also shows that the data feed conditions
have much less of an effect on users’ mean response time when
the playback video length is 20 seconds than when it is only a still
frame. The graph that incorporates playback time (Figure 4) con-

4This means that there is approximately an 8% chance that data
feed length and composition independently affect response time.
This is on the borderline of being statistically significant, as 5% is
the commonly accepted upper bound for a level of significance.
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Table 4: Significance between data feed length conditions from
a pair-wise Bonferroni post-hoc test at a 95% confidence level.
Significant differences are denoted by a bold ’Y’
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Table 5: Significance for error classification accuracy between
the various conditions from a pair-wise Bonferroni post-hoc
test. Significant differences are denoted by a bold ’Y’.

firms these effects. These interactions are discussed further in the
next section.

While data feed composition and length may interact with re-
spect to response time, there are no interactions with respect to
accuracy, as the ANOVA test on the accuracy data yielded a 0.462
interaction significance. This indicates there is a 46% chance the
observed data could occur if data feed composition and length in-
dependently affect accuracy. This implies that if the designer’s sole
goal is accuracy, data feed composition and length may be “dialed
in” independently of one another. This may be intuited to an extent
from Figure 5.

6. DISCUSSION
The measured response times are an implicit measurement of

situational awareness, as opposed to subjective (self-rating) and ex-
plicit (questionnaires administered during a suspension of the task)
measurements [6]. Most established methods for subjectively or
explicitly measuring situational awareness, such as SAGAT [3] and
SART [9], are designed to measure ongoing situational awareness
during a long-term task, and are thus not immediately applicable
to the domain we are investigating. However, we believe our im-
plicit measurements to be a good measure of the ease or difficulty
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Figure 3: Average subject response time, by test condition
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Figure 4: Sum of average subject playback + response times,
by test condition
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Figure 5: Mean error classification accuracy, by test condition.
Please note that the ordering of the data feed length axis is re-
versed relative to Figures 3 and 4 for purposes of readability.

with which the subject attains situational awareness. By examining
the time taken to classify the current error, we are able to directly

measure how long it takes to attain Level 2 (comprehension) sit-
uational awareness, using Endsley’s model [2]. Since the subject
has been performing a high-concentration distractor task for longer
than a trial’s length prior to each trial, we are confident that we are
capturing the entire process of attaining situational awareness. In
addition, because the subject’s sole task once a trial begins is to
determine the error, we also believe that we are not overestimating
the response time, except by the relatively constant factor of the
time required to manipulate the classification interface. Thus, we
believe that we are in fact able to capture a reasonably tight upper
bound on the time taken to achieve Level 2 situational awareness in
our domain.

The data from the minimal video and maximal video data feed
composition conditions suggest that a simpler display (here, just
the Roving Eye video) leads to the shortest response time, although
this incurs a significant accuracy penalty. We believe that since
subjects have limited visual information to consider while making
their choice, it takes them less time to decide how to respond given
the available information. When presented with more information,
however, subjects took significantly longer to respond, suggesting
that the extra videos add a significant processing overhead. While
response time was significantly longer in the max vid case, accu-
racy also improved significantly (Table 5), indicating that a tradeoff
must be made between response time and accuracy.

However, when the visualizer information is added to each of
these conditions, user response time does not significantly increase.
One possible explanation is that information presented by the visu-
alizer is easier to process than information that must be extracted
from the videos. This is especially true since the visualizer presents
3D information in a natural way, requiring little extra mental pro-
cessing, whereas subjects are required to fuse the multiple video
streams in order to extract 3D information from them. Another
possible explanation is that subjects made little use of the visual-
izer, and instead concentrated their attention on the videos. In order
to directly measure this, attention tracking data (such as that from
a gaze tracking system) is needed.

While the addition of the visualizer has little impact on response
time, it improves accuracy when added to the minimal video con-
dition, but degrades it when added to maximal video (Table 1). Al-
though neither of these effects is statistically significant, they may
indicate an interesting trend. The visualizer provides information
not available in the minimal video case, but may overlap signifi-
cantly with the maximal video’s content. This overlap results in
information overload, with the operator less able to glean the rele-
vant data. This may indicate that providing the same information
in more than one form is in fact detrimental.

When considering the data feed length results for response time
alone, we can at first glance see that the longer the data feed the
operator is presented with, the better - there is a clear inverse rela-
tionship between the feed length and the time subsequently taken to
select an error condition. While this is clearly not the metric of use
to the autonomous system or system designer (both of which will
instead use playback + response time), it serves to illustrate that the
operator is still accumulating and processing additional useful in-
formation during the playback process. If we were to further extend
the data feed length, we would expect the operator’s response time
to eventually plateau to the time needed to manipulate the classi-
fication interface. This hypothesis is supported by the nonlinear
form of the data feed length x response time curve (see Figure 3).

Upon examining the more relevant playback + response time
data (Figure 4 and Tables 3 and 4), we see that after a certain point
increasing the length of the data feed does not result in improved
classification time. This is because it takes longer to both watch the



display and respond than it does to watch a shorter display buffer
and take a bit longer to respond. Thus, the data suggest that a play-
back in the range of 5 to 10 seconds will result in the quickest
responses for this configuration. However, accuracy steadily im-
proves as the length of playback increases. No one choice of play-
back length optimizes both response time and accuracy: this is a
tradeoff that must be made by the system designer, and is a deci-
sion which can be guided by our results. If accuracy is imperative, a
cost in additional time will need to be paid. While the specifics will
vary between systems, it seems likely that similar playback length
vs response time and playback length vs accuracy curves will exist
in other teleoperation systems.

The interaction effects with respect to response time between the
two experimental variables provided further insight into this situa-
tion. The increased sensitivity of the two data feed conditions that
include all three video playbacks to data feed length supports the
earlier conjecture that processing information in the form of raw
video output takes longer than processing information from a sim-
pler component, such as the visualizer. Also supported is our earlier
theory about the human user’s performance plateauing after view-
ing a certain length of playback. Because the difference between
data stream conditions decreases as the playback time increases, it
can be seen that users are becoming saturated with information, and
that more information will most likely not decrease their response
time any further. In addition, this indicates that it is possible to trade
off playback time against the bandwidth required for the playback
while maintaining a given level of performance.

7. FUTURE WORK AND CONCLUSIONS
Due to lack of hardware, we were unable to log one obvious as-

pect of how situational awareness is attained: which data streams
the subject was actually attending to at any given moment. This
means that we are unable to distinguish between whether the sub-
ject was attending to a video that was of little utility for the current
error or the subject was attending to a useful video, but did not
comprehend the error. One approach that would allow us to sepa-
rate these factors is to add a gaze tracker to the system.

As mentioned above, the response time of users under increasing
data feed lengths probably plateaus after a certain point. It would
be interesting to study further what exactly determines where this
point is, and whether it is affected by other factors, such as the
selected data streams and the speed of the robots in autonomous
mode. It may be that a human assisting a robot team which moves
quickly requires less absolute time to achieve situational awareness.
If this is the case, a slow-moving system may improve the human’s
response time by playing back the buffer at a faster rate.

While our specific results are unlikely to be of direct use in other
scenarios, some relevant trends will be useful:

(1) There is unlikely to be a single configuration which optimizes
both accuracy and response time. The system designer must decide
whether he wants to optimize one or the other, or whether a com-
promise is in order. This is true when adjusting both data feed
length and composition.

(2) While increasing data feed length improves accuracy, it will
eventually stop decreasing response time and begin regressing. This
is one of the tradeoffs that must be made. Similarly, increasing the
amount of information available to the operator improves accuracy
for a time. However, the operator eventually becomes inundated
with data, at which point accuracy begins to fall off.

(3) Data feed length and composition cannot be controlled in-
dependently. In general, increasing playback length decreases the
effect of data feed composition, especially with respect to accu-
racy. This allows the designer to trade off instantaneous bandwidth

against the duration of bandwidth usage while maintaining a target
accuracy level.

(4) Although duplicating data in different forms (e.g. video and
visualizer) may intuitively seem to be helpful, it instead contributes
to information overload. Care must be taken when selecting teleop-
eration interface elements. They should be considered with respect
to each other as well as their stand-alone usefulness to the task in
order to avoid needless duplication.

In this paper we have discussed the importance of quickly gain-
ing situational awareness in systems involving sliding autonomy.
In order for a human operator to be an effective team member in a
system asking for help, they must be able to switch tasks, gain sit-
uational awareness, and diagnose the error as quickly as possible.
We introduced various factors that affect a human operator’s abil-
ity to quickly gain situational awareness of their workspace when
shown a brief, partial history of the robots’ movements. We var-
ied which data feeds were shown and how long the feeds were, in
an attempt to determine the optimal interface for our scenario and
team. Human subject experiments have shown that 5-10 seconds
one video feed results in the quickest response, while 20 seconds
of three video feeds results in the most accurate operator response.
This further illustrates the maxim that everything has a cost: the
system designer must make tradeoffs between speed, accuracy, and
bandwidth to build a system suited to the scenario at hand.
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