Towards Proactive Replanning for Multi-Robot Teams

Brennan Sellner and Reid Simmons
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

Rather than blindly following a predetermined schedule, hu-
man workers often change tasks in order to assist a coworker
experiencing difficulties. We are examining how this notion
of “helpful” behavior can inspire new approaches to online
plan execution and repair in multi-robot systems. Specif-
ically, we are investigating proactive replanning, which at-
tempts to predict problems or opportunities and adapt to them
by shifting agents between executing tasks. By continuously
predicting a task’s remaining duration, a proactive replanner
is able to accommodate upcoming problems or opportunities
before they manifest themselves. One way to do so is by
adding or removing agents to or from the various executing
tasks, allowing the planner to balance a schedule in response
to the realities of execution.

We have developed a proof-of-concept system that imple-
ments duration prediction and modification of existing tasks,
yielding simulated executed makespans' as much as 32%
shorter than possible without these capabilities.

Introduction

Current multi-robot systems can only aspire to the flexibility
exhibited by teams of humans. Members of human teams are
able to move smoothly between, and temporarily interrupt,
tasks in order to render assistance when one of their team-
mates begins to struggle with his portion of a task. While
much research has been performed with the aim of enabling
robotic teamwork, the vast majority of implemented sys-
tems treat planning and execution as mainly independent,
with plan repair or replanning occurring only once a task
has failed, and with executing tasks immune from manipu-
lation by the planning system. In contrast, humans are able
to predict upcoming problems (or opportunities) and act to
prevent (or take advantage of) them, often by changing their
current task or approach to the task. We have created a plan-
ning/execution system that is able to anticipate problems and
opportunities by predicting task duration, then proactively
replanning, rather than waiting to replan until the problem
or opportunity arises. As part of this replanning, the system
performs live task modification, that is, modifying currently

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

'The makespan of a schedule is its overall length: the time be-
tween the start of the first task and the end of the final task.

executing tasks by adding or removing agents as appropri-
ate to adjust the task’s resource requirements, expected du-
ration, and reliability. Our approach yields more efficient
executions than existing approaches (such as continually re-
planning) by predicting problems and acting to avoid them,
rather than simply reacting to them as they occur, and by
providing the planner with limited control over task execu-
tion, which allows it to modify agent allocation to accom-
modate the realities of execution.

Our basic approach to planning is to utilize an existing
symbolic planner/scheduler that makes use of iterative repair
and optimization stages to build and optimize valid sched-
ules. We have extended this planner’s repair and optimiza-
tion algorithms and heuristics to support an initial form of
proactive replanning. We are not considering the distributed
case, instead relying on a centralized planner/scheduler to
formulate a scenario-wide schedule and dispatch it to the in-
dividual agents.

Our preliminary experiments have evaluated the concepts
of duration prediction and live task modification. In our ex-
perimental domain of multi-robot assembly, live task modi-
fication provides an average 30.3% reduction in makespan,
while duration prediction yields a gain of 10.8%. When used
in combination, makespan is reduced by 31.8%, on average.
The remainder of this paper surveys related work, discusses
our approach to proactive replanning, and presents our cur-
rent experimental results.

Related Work

Prior work related to proactive replanning falls into two cate-
gories: planners and the architectures that include them. We
discuss how existing systems fail to address the concepts and
requirements of proactive replanning and how they may be
modified to realize its advantages.

Planners

The demands of proactive replanning on the planner are
significant, including support for durative actions, temporal
constraints, exogenous events, multiple agents (or at least
metric resources), and the ability to quickly replan or repair
a plan in response to feedback from the executive.

Most relevant approaches describe the world as a set of
state variables, each as a function of time. Each variable
has an associated timeline, which encodes the variable’s past

states and expected future states, given the current plan. A
task is an interval on one or more of these timelines, within
which the values of the associated variables change. Several
planners use such formulations; we discuss three: ASPEN
(Chien et al. 2000b), EUROPA (Frank & Jonsson 2003),
and IxTeT (Laborie & Ghallab 1995). All of these plan-
ners are capable of handling a range of resource types (e.g.
reusable or consumable) through the use of underlying con-
straint networks and constraint satisfaction techniques.

Given a set of goals, a plan (initially empty), the current
state, and the predicted variable timelines, ASPEN performs
iterative plan repair to resolve conflicts and other flaws in
the schedule. Repair and optimization steps may be inter-
leaved continuously as the state of the system is updated, us-
ing a most-commitment strategy (all variables are grounded
as early as possible). This strategy makes the evaluation of
metrics and projections of resource usage much simpler, but
reduces the plan’s flexibility. ASPEN appears to be a good
fit to proactive replanning, although it lacks explicit multi-
agent support. We have based our initial implementation on
ASPEN.

EUROPA is a constraint-based interval planner that re-
casts the planning problem as a dynamic constraint satisfac-
tion problem. It also makes use of timelines, although it
attempts to always maintain a valid schedule, while ASPEN
tolerates conflicts. EUROPA uses a least-commitment strat-
egy to maintain flexibility in the plan, delaying the ground-
ing of variables, such as task duration, as long as possible.
Proactive replanning could be implemented using EUROPA,
but the reasoning would likely be more complex due to this
least-commitment approach.

IxTeT also plans by using timelines, each of which con-
sists of a sequence of temporal assertions that can represent
either the persistence of a value over an interval or an in-
stantaneous change of value. IxTeT is based on partial-order
causal-link planning with constraint-satisfaction techniques
and generates partially ordered plans with unbound vari-
ables. These plans are more flexible at execution time than
the fully grounded plans produced by ASPEN, but make
it significantly more difficult to evaluate metrics and pre-
dict conflicts. While IxTeT can perform plan repair through
search in the partial plan space, the importance to proactive
replanning of metric evaluation and conflict prediction make
IxTeT less suited to proactive replanning than ASPEN.

Architectures

Architectures serve to tie the different elements of an au-
tonomous system into a cohesive whole, and define how
the components interact. Such architectures commonly have
been divided into two or three primary components: a func-
tional layer that interacts with hardware and executes low-
level commands and a decisional layer that determines what
commands should be executed. The decisional layer often is
split into a high-level deliberative planner and a mid-level
execution layer responsible for overseeing the functional
layer. Proactive replanning requires a close, high-frequency
connection between the planning and executive layers, so
that the planner is kept up-to-date on execution progress,
may continuously replan, and may affect currently execut-

ing tasks. Existing architectures “lock™ currently executing
tasks to prevent the planner from modifying them; this lack
is the primary architecture-related impediment to the imple-
mentation of proactive replanning.

Three-layer architectures such as 3T (Bonasso et al.
1997) and ATLANTIS (Gat 1992) may be adaptable to
proactive replanning, but the ties between their planning and
executive layers generally are not tight enough to support
duration prediction and live task modification.

LAAS (Alami et al. 1998) and CLARAty (Nesnas et al.
2003) both encapsulate planning and execution into a sin-
gle layer. In the case of LAAS, the two are tightly inter-
twined, while in CLARAty the decisional layer still contains
distinct planning and execution objects. At the moment,
two instances of CLARAty’s decisional layer are available:
CASPER (Chien et al. 2000a) and CLEaR (Estlin et al.
2001). CASPER uses the ASPEN (Chien et al. 2000b)
planner and a simple executive, while CLEaR adds a TDL-
based (Simmons & Apfelbaum 1998) executive to CASPER.
Both LAAS and CLARAty appear well-suited to proactive
replanning, due to the relatively tight coordination possi-
ble between their respective planning and execution com-
ponents. However, as currently implemented, neither is able
to modify a currently executing task, since active tasks are
locked to avoid conflicts between planner and executive. In
order to realize proactive replanning, this restriction on the
modification of executing tasks must be relaxed to allow the
planner to dynamically change the allocation of agents. Due
to concerns about how well IxTeT (LAAS’s planner) could
be adapted to proactive replanning, we selected CASPER as
a foundation for our work.

Another relevant architecture is IDEA (Muscettola et al.
2002), which advocates the use of planning as the core
of each level of abstraction, from mission planning to re-
active execution. ‘Planner” and ‘“executive” modules are
both implemented as planners operating with different plan-
ning horizons. As currently implemented, IDEA segregates
the planning horizon between the “planner” and “execu-
tive” modules. This segregation would need to be relaxed
in order to support proactive replanning so that the higher-
level module can modify executing tasks in response to pre-
dicted problems. IDEA’s inter-module communications ap-
pear sufficient for lower-level modules to keep higher-level
planners abreast of developments. IDEA makes use of the
EUROPA planner as its internal planning module.

Approach

Proactive replanning consists of predicting problems (or op-
portunities), then adjusting current and future tasks as appro-
priate. To enable proactive replanning, we extend CASPER
with two novel extensions to the conventional approach to
planning and execution: task duration prediction and live
task modification. Duration prediction allows the planner
to predict how long each task will take to complete as exe-
cution progresses. In the presence of setup tasks and non-
instantaneous state changes, this allows the planner to take
advantage of opportunities that would pass unnoticed by
conventional approaches. For instance, if a task A is pre-
dicted to finish early, the setup actions of tasks following

A may be started earlier than initially scheduled, enabling a
shorter makespan. Live task modification tightens the con-
nection between the executive and the planner by allowing
the planner to institute changes in teams of agents during
task execution. This provides the planner with the ability
to utilize idle agents and balance resources in order to com-
pensate for under-performance, take advantage of unexpect-
edly good performance, or add additional agents to deal with
contingencies. Together, duration prediction and live task
modification allow a planner to be proactive in its approach
to plan repair and optimization, addressing likely problems,
rather than simply reacting to them as they occur.

Domain and Optional Roles

Task modification by changing the team performing a task
is predicated upon the existence of tasks in the domain that
afford the addition or removal of agents. We characterize a
task as consisting of a set of roles, some required and some
optional. Required roles must be filled throughout the task’s
execution. While optional roles are not necessary for the
successful completion of the task, they may provide a variety
of benefits, such as increasing robustness, allowing faster
recovery from failures, and increasing the rate of progress
during normal operation.

Our current scenario is a subset of a construction task sim-
ilar to one that might be performed by a robotic team con-
structing habitats on Mars or the Moon. The overall scenario
consists of adding panels to an existing framework (Fig-
ure 1), and requires four tasks per panel to bring it from
storage and attach it to the framework: Transport_Panel,
Rotate_Panel, Place_Panel, and Bolt_Panel. Each task
has different agent requirements and different combinations
of optional roles (Table 1). For instance, in the Trans-
port_Panel task, two agents (the transporters) must be as-
signed throughout the task in order to carry the panel, but
optionally up to two additional transporter agents can assist,
increasing the team’s rate of progress. If agents are available
for the optional scout roles, they range ahead of the trans-
porters, seeking out the fastest path to the goal that avoids
terrain in which the transporters may become mired. If the
transport sub-team does become mired in rough terrain, op-
tional fow agents are able to assist in their extraction. Note
that if the transporters become mired, scout agents may be
reassigned to the tow roles.

Architecture

Our conceptual approach integrates CASPER/ASPEN into
an architecture related to the classic three-tiered architec-
tures (e.g. (Bonasso et al. 1997)), and incorporates plan-
ning, executive, and behavioral layers (Figure 2, (Sellner
et al. 2006)). The planner forms an initial valid schedule,
and is responsible for repairing and optimizing the sched-
ule as execution proceeds. During execution, as task start
times arrive, the planner dispatches them to the distributed
executives, along with their initial parameters (e.g. the com-
position of the initial team). The executive then activates
the relevant portions of the behavioral layer. As the behav-
ioral layer executes the task, it continuously provides up-
dated state and task completion information to the executive.

Experimental Assembly Scenario

Placer

Observer

Figure 1: The notional structure being assembled in our ex-
periments. Tasks are accomplished by fluid teams of agents
filling required and optional roles.

Planner & Scheduler

* *. * | * |

Executive Executive |: :| Executive
Behavioral Behavioral Behavioral
Agent 1 Agent 2 Agent 3

Figure 2: Our approach makes use of a centralized planner
that dispatches tasks to distributed executive and behavioral
layers.

If state variables of interest to the planner are modified or a
task has completed, an update from the executive to the plan-
ner is triggered. This update may result in a change in the
predicted or final task durations, potentially creating sched-
ule conflicts or opportunities. The planner then acts to repair
and optimize the schedule by using a variety of heuristics,
including those that make use of live task modification to
change the composition of teams currently performing tasks.
Our initial implementation uses CASPER/ASPEN as the
planning layer, a modified version of the CASPER executive
as the executive, and a simulator that simultaneously models
the behavioral layer and the stochastic nature of execution.

Planner We are currently using ASPEN (Chien et al.
2000b) as our planner, with the CASPER architecture in-
terfacing between ASPEN and the executive. ASPEN is a
repair-based planner that employs user-defined heuristics to
make decisions at a series of choice points throughout the
repair/planning process. ASPEN also maintains task and pa-
rameter constraint networks, allowing tasks to be temporally
constrained with respect to each other, and task parameters
to be constrained with respect to each other, as well as the
values of resources and parameters in other tasks.

Task Role ‘ Role Type ‘ Capacity ¢ | Effect
Transporter | Required 2 Carries panel from stockpile to worksite. May become tem-
porarily bogged down in the terrain.
Transporter | Optional 2 Helps to carry panel; increases rate of progress.
Transport_Panel Scout Optional 2 Decreases probability of becoming mired.
TowTruck Optional 2 Reduces time to extract the team after becoming mired.
Rotator Required 2 Rotates panel from horizontal carrying position to the verti-
cal position required for placement. Panel may slide out of
Rotate_Panel Rotators’ grips; recovery from this error requires a Lifter.
Lifter Optional 1 If the panel slides, the Lifter will reposition it to allow rotation
to continue.
Hanger Required 1 Places hangers on the structure in preparation for panel place-
Prep_Hangers ment. No failures; must occur prior to each Place_Panel.
Placer Required 2 Places panel on structure; may fail, necessitating resetting to
Place_Panel the start position before another attempt may begin.
Observer Optional 2 Decreases probability of failure.
Bolter Required Inserts bolts.
Bolt_Panel Bolter Optional 2 Increases bolting rate through parallelization.

“The capacity of an optional role indicates the maximum number of agents that may be assigned to it (e.g. 0, 1, or 2 Observers may be
assigned to a Place_Panel task). The capacity of a required role indicates exactly how many agents must be assigned to the role (e.g. there

must be exactly two Placers assigned to a Place_Panel task).

Table 1: Scenario tasks and their component roles.

We make extensive use of the parameter constraint net-
work when performing duration prediction. The duration of
each task is constrained to be equal to the output of a func-
tion, within which we perform our prediction calculations.
ASPEN’s constraint network automatically calls the predic-
tion function whenever one of its inputs has updated, and
any resulting change in the task’s predicted duration is prop-
agated through the constraint network. Any conflicts or op-
portunities that arise as a result are handled during ASPEN’s
next repair/optimization pass. We selected ASPEN because
of its repair-based paradigm, support for durative actions,
and most-commitment approach to variables, all of which
are either required or ease the implementation of proactive
replanning.

ASPEN’s approaches to repair and optimization are quite
similar: (1) select a conflict to resolve (or metric to opti-
mize), (2) stochastically select and apply a repair (or opti-
mization) method, and (3) repeat until all conflicts are re-
solved or the allotted time has elapsed. The repair and op-
timization methods are heuristic routines applicable to one
or more types of conflicts (or metrics). We have extended
ASPEN in a variety of ways, including providing several
domain-specific heuristics and adding new repair and opti-
mization methods that utilize the structure inherent in the
optional role tasks of our domain.

We have added one repair and one optimization heuris-
tic to ASPEN’s default set. When repairing temporal or
resource conflicts between tasks, the heuristic searches the

possible combinations of roles for one which will complete
the task quickly enough to avoid the conflict. If the con-
flict cannot be resolved by adding agents (and thus shrinking
the task’s duration), the heuristic instead attempts to use the
minimum number of agents, in order to resolve conflicts in
which agents are oversubscribed. Once a new set of roles
has been selected, it searches for a set of agents to fill them
that minimally disturbs other active teams.

If there are agents standing idle, our optimization heuris-
tic attempts to make the best use of them. It first constructs
an estimate of the critical path by examining the resource
and ordering constraints of the schedule, beginning with
the last task and working backwards. The heuristic then
searches for an unstarted task on the critical path that the
available agents can perform. If no such task exists, the idle
agents are added to currently executing tasks with unfilled
roles, with preference given to tasks on the critical path.

Executive The executive is based on CASPER’s single-
layer executive (Chien et al. 2000a) (Estlin et al. 2005),
with several modifications to suit our needs. CASPER was
selected due to its integration with ASPEN, our planner of
choice. The original CASPER executive tracks resource
consumption and task start and end points, and informs the
planner when tasks complete. For instance, we extended
the CASPER executive to start parameterized simulations as
tasks are dispatched to the executive by the planner, then
relay task state information back to the planner as relevant
state changes. The original CASPER simulator has no ex-

Finished
dist <=0

Servoing
dist > 0 && !failure

dist = dist - rate_of_progress
time++

Done Resetting: Failure

Recalibrate

dist > 0 && failure

dist >= initial_dist failure_count++

time++

time += 20

Return to Initial Point

dist < initial_dist

dist = dist + rate_of_progress
time++

Figure 3: The stochastic simulation model for Place_Panel.
This is used to simulate execution, and provides the state that
is used for duration prediction during execution. In addition,
this model is used offline to build the duration prediction
tables.

ecution model, tasks always complete exactly when sched-
uled to do so, and updated state information is not relayed to
the planner until a task completes.

Behavioral The behavioral layer is responsible for reac-
tive control, and is dynamically configured by the executive.
It can either interface with hardware or with a simulator. In
our initial implementation, we use a simulator which mod-
els both the reactive nature of the behavioral layer and the
stochastic nature of execution in the real world. In our fu-
ture work we will be moving to a lower-level simulator and
adding the behavioral layer we currently use in our assembly
work (Sellner et al. 2006).

The current simulator maintains an independent model of
each task being executed. This stochastic model introduces
into the system a degree of uncertainty akin to that found
in real-world robotic teams. In our current system, these
models (see Figure 3) are precisely the models used to build
our duration predictions. They model only the high-level
progress of a task, including nonterminal failures, and re-
port task-level state to the executive, while allowing the team
composition to be changed dynamically. For instance, while
individual components of agents (such as manipulators or
sensors) are not simulated, events such as a transport team
becoming mired are.

Duration Prediction

Duration prediction algorithms must be capable of estimat-
ing a task’s remaining duration based on the current team
and task state. Since the size of the team / state space is
exponential in the number of optional roles and state vari-
ables, and factorial in the number of agents, the space can

become quite large. For instance, the Transport_Panel task
(Table 1) may be performed by 49,876 distinct teams if
10 agents are available. A minimal task state for Trans-
port_Panel is the remaining distance to the goal. This is
a continuous value; assume the maximum distance is 20
meters, and that we discretize it into 10 centimeter por-
tions. This yields 201 possible state space values, resulting
in 201 % 49,876 = 10,025,076 distinct inputs from which
we must be able to predict the task’s remaining duration.

Thus, the fundamental problem associated with duration
prediction is to provide estimates of sufficient fidelity, while
keeping computational and spatial requirements within lim-
its. Our initial approach is straightforward: prior to exe-
cution, we build a table of estimates of the mean expected
duration that spans the team / state space, then refer to it at
execution time. As the task executes, we recompute its end
time based on this table and the observed state.

The table is filled by repeatedly simulating the task and
averaging the results. Each simulation run contributes data
to every point in the table that is traversed during the run.
When performing repeated simulations such as this, one
must determine how many data points need to be accumu-
lated for each state in order for the estimate to be sufficiently
accurate. Without available ground truth, we are unable to
determine a model’s accuracy. Instead, we focus on the pre-
ciseness (variability) of the estimate. After each run, we cal-
culate the 95% confidence interval of the corpus of observed
data for the state (table entry) in question, and compare its
width with the mean value. The ratio of confidence inter-
val width to mean value is referred to as relative precision
by (Law & Kelton 1982), and is a measure of how narrow
our confidence interval is in the context of the task. Once
the relative precision has decreased below a given threshold,
or has not decreased in the past 10 simulations, we move
on to the next state. Law and Kelton (pg. 293) recommend
a threshold no greater than 0.15; we have used 0.05 in our
work to date. The choice of this threshold is relatively ar-
bitrary, but 0.05 has been used by a number of researchers
(Bienstock 1996) (Pawlikowski, McNickle, & Ewing 1995).
Note that since every simulation contributes data to many
states, the number of additional simulation runs performed
per state falls off rapidly as we iterate through the table.

While this table-based approach is sufficient for our sim-
ple test domain, it has two fundamental weaknesses: its spa-
tial complexity scales very poorly, and it requires a massive
amount of data to initialize, which is rarely available in real
world systems. We are currently investigating various ap-
proaches to approximating this table in a spatially tractable
way that supports extrapolation to provide estimates at un-
observed states. Both model trees (Quinlan 1992) and lo-
cal estimators such as LWPR (Vijayakumar & Schaal 2000)
show promise.

One advantage of duration prediction is that it allows the
planner to take advantage of opportunities provided by task
under-runs. Consider a fragment of a construction scenario
consisting of bolting a panel (Bolt) and preparing (Prep)
and placing (Place) the next panel (Figure 4). Bolt re-
quires only one agent, and must be completed before the
next Place begins. Prep is a setup task for Place, and is

Initial Agent 1 | Bolt
(a) Place —
Schedule Agent 2 Prep
Bolt Agent 1 | Bolt | Duration
(b) Completes Place =
Early Agent 2 Prep
Without Agent 1 | Bolt 4
(c) ithou Place
Prediction Agent 2 Prep
Tm n
With Agent 1 | Bolt H
(d) reh Place
Prediction Agent 2 Prep
m Tf‘

Figure 4: Continually predicting the remaining duration of
executing tasks allows the planner to make the fullest use of
opportunities presented by task under-runs.

constrained to end at Place’s start time. Place requires two
agents, while Prep needs only one. The initial schedule is
depicted in Figure 4a.

If Bolt completes early (Figure 4b), Prep and Place may
in turn be started early, reducing the overall makespan. If
the planner does not predict this early completion, the only
optimization available is to start Prep immediately upon
Bolt’s completion (Figure 4c). However, this is inefficient,
as Prep may be executed in parallel with Bolt. If the plan-
ner were able to predict Bolt’s true completion time at any
point prior to its completion at Point n, it would be able to
start Prep early, realizing a further reduction in makespan.
Ideally, the prediction would be made prior to Point m (that
is, Length(Prep) seconds before Bolt’s early completion),
allowing Place to be scheduled immediately after Bolt, and
Prep to be executed entirely in parallel with Bolt (Figure
4d).

Live Task Modification

For a robotic team to exhibit the same fluidity that human
teams achieve, the planning/execution system must not only
predict the future state of tasks but must also be able to mod-
ify currently executing tasks. Existing planning/execution
systems do not provide sufficient mechanisms for the plan-
ner to manipulate the teams assigned to live tasks. This re-
duces the complexity of both the planner and the executive,
but results in avoidable inefficiencies.

Live task modification expands the options available to
the planner by allowing it to modify the team assigned to a
task during its execution by adding or removing team mem-
bers. The root problem of live task modification is com-
plexity: a vast search space of potential teams and a multi-
plicity of tasks that must be managed to make the addition
and removal of agents possible (recall that Transport_Panel
may be performed by 49,876 distinct teams if 10 agents are
available).

The repair and optimization heuristics discussed in the
“Planner” section use the structure inherent in tasks with

Huey

Louie

1 Bolter

Dewey

Donald

Huey & Louie

Huey & Dewey

Huey & Donald

Bolt Panel 2 Bolters l——

Louie & Dewey

Louie & Donald

Dewey & Donaldj

Huey, Louie, & Dewey

Available Agents:
Huey, Louie,

Dewey, & Donald 3 Bolters

Top-Level i Filled Roles

Louie, Dewey, & Donald|

Huey, Louie, & Donald

AN

Huey, Dewey, & Donald

Assigned Agents

Figure 5: The Bolt_Panel task fastens an already-placed
panel to the structure. With four agents, there are the above
14 ways to perform the task. This tree branches rapidly in
the presence of more roles and/or agents. Our live task mod-
ification heuristics search the “Filled Roles” level when ad-
justing the duration of a task and portions of the “Assigned
Agents” level when resolving agent oversubscription con-
flicts.

optional roles to intelligently search the space of teams. A
task with optional roles can be represented as in Figure 5:
in the second level a selection of which roles will be filled
is made, while specific agents are assigned in the third level
of decomposition. We currently define agents to be homo-
geneous: all agents are able to perform all available roles.
Given this, the selection of the roles themselves determines
the task’s expected duration. Thus, when attempting to re-
solve a conflict by reducing a task’s duration, the heuristics
search only the second (“Filled Roles”) level of the task de-
scription, selecting specific agents only after a role set has
been chosen. If instead the heuristic is attempting to resolve
an agent oversubscription conflict by minimizing the num-
ber of agents used, it selects the role set requiring the fewest
agents, then searches the third level for a non-conflicting set
of agents. In this way, we avoid an exhaustive search of the
team space.

However, if agents have differing levels of skill, task
duration and agent assignment become interrelated. Effi-
ciently searching such team spaces is an area we are inves-
tigating, although this paper addresses only homogeneous
agents. It may be possible to build a network, rather than a
tree, with connections between nodes differing by only one
agent. Searches could then be concentrated on those teams
that could be formed with the least amount of disturbance to
the existing schedule. It may be possible to enable an initial
coarse search by layering a meta structure representing the
different optional roles on top of such a network.

To illustrate the usefulness of live task modification, con-
sider a scenario where the initial schedule consists of two

Agent 1
Bolt A

(@) Initial Agent 2
Schedule

Agent 3
Bolt B

Agent 4

Agent 1
Bolt A Over-run —

Agent 2

(b) A Over-runs,

B Under-runs Agent 3 1 i

Agent 4 Btz Duration:

Agent 1
Bolt A —

Without |Agent 2
(c) Live Task
Modification |Agent 3

Bolt B
Agent 4
Agent 1
Bolt A
With Agent 2 (—'
(d) Live Task
Modification |Agent 3
Bolt B
Agent 4
. Agent 1
. With Bolt A
Live Task [agent 2 (—l

Modification
(e) and

Duration Agent 3
Prediction Agent 4 |Bolt B "
Predic:i:iun—T L B's end with 2 agents

Figure 6: Reassigning agents during task execution allows
the system to adjust resource allocation to reflect the realities
of execution.

Bolt tasks: BoltA and BoltB (Figure 6). Each task must
be performed by one agent, but additional optional bolting
agents may be added to reduce the task’s duration. Initially,
let Agents 1 and 2 perform Bolt A, while 3 and 4 work on
BoltB (Figure 6a). Assume that BoltB finishes execution
early while Bolt A over-runs (Figure 6b). In the absence of
live task modification, the schedule’s length would be the
length of the over-running BoltA (Figure 6¢). However, if
live task modification is available, Agents 3 and 4 may be
transferred to Bolt A once BoltB completes (Figure 6d), re-
ducing its duration. If both duration prediction and live task
modification are available, Agent 3 may be transferred once
the over- and under-runs are predicted (Figure 6e), partially
balancing the schedule and further reducing its length.

As discussed in the “Architecture” section, the current im-
plementation of live task modification is used by the plan-
ner’s repair methods to resolve agent over-subscription con-
flicts by either adding additional agents to shrink a task’s
duration or removing optional agents to eliminate the over-
lap between two tasks’ agent requirements. In addition, the
planner’s optimization methods add idle agents to currently
executing tasks on the critical path, in order to make the most
use of available resources, as illustrated in Figure 6d. The
transferring of agents between two tasks, as depicted in Fig-
ure 6e, has not yet been implemented. Also, we currently
assume that agents may be added to a team instantaneously,
an assumption we will be relaxing in our future work.

Results

Building on ASPEN and CASPER, we have implemented
and evaluated a proof-of-concept planning and execution
system to examine how duration prediction and live task
modification affect the makespan of an executed sched-
ule. When planning and optimization time is not included,
both approaches result in shorter simulated makespans, al-
though the effects of live task modification are more dra-
matic. When combined, they reduce makespans further than
either does alone, yielding executed schedules on average
31.8% shorter than was achieved without these capabilities.
We discuss here the current scenario, experimental design,
and results.

Scenario

Our initial scenario is a subset of the domain described in the
“Approach” section (illustrated in Figure 1), and includes
only the Place_Panel and Bolt_Panel tasks, which are re-
sponsible for temporarily hanging a panel from the struc-
ture and permanently fastening it, respectively. A Bolt_Panel
task must follow each Place_Panel, although not necessarily
immediately. Each Place_Panel task must be preceded by
an associated setup task (Prep_Hangers), which places the
temporary hangers used to hold the panel in place until it
is bolted. These temporal constraints are enforced through
the use of an Assemble_Side task, which decomposes into
the Prep_Hangers, Place_Panel, and Bolt_Panel tasks (Fig-
ure 7). There are eight Assemble_Side tasks in the scenario,
representing the construction of a two panel-high, four-sided
structure (Figure 1). To avoid interference between teams,
only opposite sides of the structure may be assembled con-
currently, leading to the high-level ordering depicted in Fig-
ure 7. Planning takes place over an effectively infinite plan-
ning horizon. Four homogeneous agents are available, each
of which is equally capable and may perform each available
role, although a given agent can hold only a single role at a
time.

Prep_Hangers requires only a single agent, takes a fixed
length of time, and involves no uncertainty. Place_Panel re-
quires two placement agents, which perform the panel ma-
nipulation. The placers may fail and be forced to restart at
any point in the task. If one, or two, optional observer agents
are present, the likelihood of failure is reduced. With two
required and two optional roles, and four available agents,
there are a total of 24 possible teams.

The Bolt_Panel task has one required and two optional
bolter roles. If filled, the optional roles increase the team’s
rate of progress, although each additional agent results in a
smaller increase. However, adding additional agents does
add some risk to the team: there is an independent chance
that any given agent will fail on a given timestep. If any
agent fails, the entire team is forced to recover, delaying the
task. With four available agents, one required, and two op-
tional roles, there are 14 possible teams (see Figure 5).

This initial scenario provides a reasonable testbed for our
proactive replanning methods, exhibiting stochastic execu-
tion, temporal constraints, setup tasks, and temporary fail-
ures, all of which provide opportunities for both duration
prediction and live task modification.

Initial Experimental Scenario

Assemble

| Assemble Side Side

,,,,,,
. '..

Repeat Twice

Prep Place Bolt More, For
Hangers Panel Panel A Total Of
8 Sides

Assemble

| Assemble Side Side

Pre Place Bolt
Ha ngers Panel Panel

Serlallzatlon Constraint

I

Decomposition

Figure 7: The scenario used in our experiments. A total of
eight Assemble_Side tasks are included, serialized by pairs,
since teams cannot work on adjacent sides of the structure
without risking interference.

Experimental Conditions

To experimentally validate our beliefs about the effective-
ness of duration prediction and live task modification, we
conducted an experiment comparing the four combinations
of the two conditions. In our initial experiments, we ne-
glect planning time in order to evaluate the validity of our
approach. That is, the planner is given an arbitrary amount
of time between timesteps to repair and optimize the sched-
ule. Our experimental conditions are:

1. Baseline The baseline condition utilizes neither duration
prediction nor live task modification. All tasks are set ini-
tially to a fixed duration equivalent to the initial prediction
made for the assigned team by the duration prediction al-
gorithm, but are not updated as the task’s state evolves
throughout execution. If a task over-runs, its duration is
extended in increments of one time step until it completes.
If a task finishes early, its duration on the planner’s sched-
ule is shrunk when it has completed. The planner utilizes
repair and optimization heuristics that modify teams, but
only with non-executing tasks. During execution, the fol-
lowing actions are performed before each time step:

(a) Right-shift: Move any non-executing tasks with
agent subscription (“resource”) conflicts into the
future, until the conflict is resolved.

(b) Left-shift: Move all non-executing tasks to the
earliest time consistent with temporal and resource
constraints.

(c) Optimize: Run 20 iterations of the planner’s iter-
ative optimization algorithm, without considering
executing tasks.

(d) Repair: Perform iterative repair until all conflicts
are resolved. Executing tasks may not be modified.

2. Prediction This condition adds task duration prediction
to the baseline scenario. Executing tasks still may not be
modified in this condition. As a result, the only source

of advantage with respect to the baseline is the timely
scheduling of setup tasks, as described in the “Approach”
section (illustrated in Figure 4). This occurs within the
left-shift and optimize steps of the replanning algorithm.
No additional heuristics are employed, since duration pre-
diction simply updates the contents of the planner’s cur-
rent schedule, allowing the baseline system to react ap-
propriately.

3. Live Modification In this condition, the planner is al-

lowed to modify executing tasks by changing the assigned
agents. However, duration prediction is not available in
this condition, so the planner is limited to resolving agent
conflicts and putting idle agents to use with this approach.
As discussed in the “Approach” section, additional heuris-
tics are used in the optimize and repair steps to reason
about the benefits of modifying executing tasks.

4. Prediction and Live Modification In this condition, both

duration prediction and live modification are enabled.
Agents are shifted between tasks during both the optimize
and repair steps in response to changes in the predicted
duration of tasks.

Data

We performed 50 simulated runs under each of the four con-
ditions outlined above. Statistics are summarized in Table
2. All data is presented as the mean across the runs, with
standard deviation in parentheses. While makespan is self
explanatory, several of the other terms may require some
clarification. “Additional tasks scheduled” is the number of
tasks on the final schedule beyond the minimum. When live
task modification is available, an additional pair of tasks will
be scheduled every time an executing task is modified. “Av-
erage agent usage” is the average across all agents of the
fraction of the makespan during which each agent was ac-
tive. This can be considered a measure of how effectively
the agents were utilized. “Repair episodes” and “Optimiza-
tion episodes” refer to the number of times the repair and
optimization algorithms were run, respectively. The repair
algorithm is invoked only when conflicts arise in the plan,
while optimization is attempted at every time step. “Repair
iterations” is the average number of individual repairs that
were applied during the course of a run. “Time spent repair-
ing” and “Time spent optimizing” are the total wall clock
times spent respectively repairing or optimizing plans during
a run. Finally, “Successful modifications” is a count of the
number of optimization attempts that succeeded in reducing
the makespan by using idle agents to begin task execution
early or reinforcing teams already executing tasks.

Discussion

The most notable aspect of the data in Table 2 is the aver-
age makespan, which also is depicted in Figure 8. We can
see that both duration prediction and live task modification
provide benefits, although the latter clearly is more effec-
tive. This is unsurprising, as task modification is useful in
a variety of situations, while prediction alone can provide
benefits only from task under-runs in the presence of setup
tasks or significant, sudden over-runs. In the experimental

. .. Live Task Prec!iction and
Baseline Prediction Modification Live Task
Modification

Makespan (s): 1176.90 (343.58) 1050.14 (273.32) 820.84 (123.55) 802.76 (141.53)
Reduction in makespan —(—) 10.8% (20.4%) 30.3% (64.0%) 31.8% (58.8%)
Additional tasks
scheduled: — () — (=) 32.68 (4.84) 31.16 (4.30)
Average agent usage (frac- 0.59 (0.05) 0.56 (0.06) 0.91 (0.02) 0.86 (0.07)
tion of makespan):
Repair episodes: 30.04 (36.60) 123.28 (23.06) 15.78 (8.00) 97.38 (23.86))
Repair iterations: 4079.88 (9507.00) | 3313.86 (6815.19) | 3384.76 (6834.70) | 7883.14 (15169.14))
Time spent repairing (s): 15.13 (24.23) 14.23 (16.99) 13.57 (15.58) 26.14 (40.82)
Optimization episodes: 1177.90 (343.58) 1129.24 (357.58) 821.84 (123.55) 807.14 (142.73)
Successful modifications: 35.26 (6.15) 35.14 (5.46) 51.64 (6.19) 48.58 (7.58)
Time spent optimizing (s): 177.43 (131.16) 181.00 (141.60) 66.32 (73.95) 67.99 (77.00)

Table 2: Results of our initial experiments. 50 execution runs were performed under each condition. All data is reported as
mean (standard deviation). All runs were performed on a lightly-loaded Pentium-4 3 GHz with 1GB of RAM.

Makespan as a Function of Experimental Condition
1600 T T

1500 -

1400~

1300~

1200~

1100~

Makespan (s)

1000

L L L L
Baseline Prediction Live Mod Both
Condition

Figure 8: The average makespan and standard deviation for
each of the four test conditions.

scenario, setup tasks occur only in concert with Place_Panel
tasks. The combination of prediction and live task modifica-
tion performs only slightly better than live task modification
alone. The lack of synergy is due in part to the implemented
optimization heuristic: it assigns idle agents, but does not
remove agents from active teams not on the critical path.
Extending the heuristic to support such transfers should in-
crease the effectiveness of the combined condition. In addi-
tion, domains with more setup tasks, such as those that re-
quire setup tasks when adding an agent to a live team, should
result in larger relative improvements in the combined con-
dition.

It is also notable that the amount of repair increases by a
factor of 4 — 6 when duration prediction is enabled. This is
largely due to jitter: the predicted completion time of a task
will fluctuate slightly even during normal operation, since
the underlying model is learned and imperfect. This often

results in semi-spurious conflicts in which tasks overlap (or
a temporal constraint is violated) by a few timesteps. The
repair of these minor conflicts accounts for the observed in-
crease in repair iterations. In contrast, when duration predic-
tion is not present, a conflict will not occur until a task actu-
ally over-runs its scheduled finish time. While this results in
fewer planning episodes, the cost is longer makespans. This
is a classic computation/quality trade-off: if we are able to
either reduce the jitter or optimize the system to perform the
requisite repair operations in real time, we will be able to
take full advantage of duration prediction.

As an initial attempt at alleviating this jitter, we have
added a buffer of 5 seconds at the end of every task, which
absorbs some of the jitter and, to an extent, reduces the num-
ber of planning episodes. The above results include this
buffer. Significant work on the minimization of jitter has
been performed in fields such as control systems theory (e.g.
(Mansuri 2003) (Skormin, Tascillo, & Nicholson 1993)). A
more formal solution is a component of our future work.

In the current implementation, the iterative optimization
procedure is run at every timestep, which is clearly sub-
optimal and results in a significant waste of computation
time. However, task duration estimates are updated at each
timestep, making it possible that an optimization opportu-
nity has presented itself. This indiscriminate optimization is
acceptable in a proof-of-concept system such as ours, but we
will be investigating a more focused approach.

Finally, the number of successful team modifications dou-
bles when live task modification is enabled. This indicates
that about half of the changes in agent assignments being
made in the live task modification conditions are affecting
executing tasks. This primarily occurs when idle agents are
assigned to executing tasks on the critical path.

Future Work
Proactive replanning is an area rich in potential research.
Initially, we will investigate different approaches to rep-
resenting duration prediction estimates and searching the

space of possible teams with the goal of bringing the ben-
efits of proactive replanning to a real-time system.

We also plan to extend our work to support non-
instantaneous agent transfers. That is, the addition of an
agent to a team takes time, and potentially will slow the
remainder of the team during the process. In addition, the
agent being transferred may need to execute one or more
setup actions (such as moving to a new location, warming
up an instrument, etc.) before it can join its new team. This
will complicate the planner’s reasoning process and reduce
the utility of live task modification somewhat, but is neces-
sary to more accurately reflect real world tasks.

As soon as the modification of teams becomes non-
instantaneous, we must address risk management. When
transferring an agent, there is a possibility that its new team
will complete its task prior to the arrival of the new agent,
resulting in wasted time and resources. In addition, there is
risk associated with starting setup tasks early if their comple-
tion must coincide with the start of the next task. Reasoning
about the uncertainty associated with task duration and how
this should affect the planner’s decision to modify a team is
an important avenue of research.

Finally, we will also be expanding the fidelity of the sim-
ulator by moving to a much lower-level approach, in which
the execution of tasks is stochastic, but is not necessarily
captured accurately by the models used to build our duration
prediction tables. In a similar vein, we plan to implement
proactive replanning as part of our existing real world as-
sembly team (Sellner et al. 2006). Our approach to duration
prediction will need to be extended to adapt to mismatches
between observed data and our underlying task models.

Conclusion

Inspired by the fluidity of human teams, we have developed
an initial proactive replanning system capable of predict-
ing task durations and modifying currently executing tasks.
While many of the benefits of proactive replanning are real-
ized only in domains incorporating optional roles, such roles
may be designed naturally into a wide range of tasks and do-
mains, granting the planner significant additional flexibility.

Duration prediction and live task modification allow the
system to execute plans more efficiently than otherwise pos-
sible. We have conducted experiments in simulation demon-
strating reductions in the executed makespan ranging from
11% - 32%, depending on which aspects of proactive re-
planning are implemented. Further research is indicated, but
proactive replanning appears to be a fruitful addition to the
stable of approaches to planning and execution.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research, Special Issue on Integrated Architectures for
Robot Control and Programming 17(4).
Bienstock, C. C. 1996. Sample size determination in logistics
simulations. International Journal of Physical Distribution and
Logistics Management 26(2):43-50.
Bonasso, R.; Firby, R.; Gat, E.; Kortenkamp, D.; Miller, D.; and
Slack, M. 1997. Experiences with an architecture for intelligent,

reactive agents. Journal of Experimental and Theoretical Artifi-
cial Intelligence 9(2-3):237-256.

Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Rabideau,
G. 2000a. Using iterative repair to improve the responsiveness
of planning and scheduling. In Proceedings of the International
Conference on Al Planning Systems (AIPS).

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt,
B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Steb-
bins, G.; and Tran, D. 2000b. Aspen — automated planning and
scheduling for space mission operations. In Space Ops.

Estlin, T.; Volpe, R.; Nesnas, I.; Mutz, D.; Fisher, F.; Engelhardt,
B.; and Chien, S. 2001. Decision-making in a robotic architecture
for autonomy. In Proceedings of the International Symposium on
Artificial Intelligence, Robotics, and Automation in Space.
Estlin, T.; Gaines, D.; Chouinard, C.; Fisher, F.; Castano, R.;
Judd, M.; Anderson, R. C.; and Nesnas, I. 2005. Enabling au-
tonomous rover science through dynamic planning and schedul-
ing. In Procedings of the IEEE Aerospace Conference.

Frank, J., and Jonsson, A. 2003. Constraint-based attribute and
interval planning. Journal of Constraints, Special Issue on Con-
straints and Planning 8(4).

Gat, E. 1992. Integrating planning and reacting in a heteroge-
neous asynchronous architecture for controlling real-world mo-
bile robots. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI).

Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI).

Law, A. M., and Kelton, W. D. 1982. Simulation Modeling and
Analysis. New York: McGraw-Hill.

Mansuri, M. 2003. Low-Power Low-Jitter On-Chip Clock Gener-
ation. Ph.D. Dissertation, University of California, Los Angeles.

Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and Plaunt, C.
2002. Idea: Planning at the core of autonomous reactive agents.
In Proceedings of the 3rd International NASA Workshop Planning
and Scheduling for Space.

Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Estlin,
T.; and Kim, W. S. 2003. Claraty: An architecture for reusable
robotic software. In Proceedings of the SPIE Aerosense Confer-
ence.

Pawlikowski, K.; McNickle, D. C.; and Ewing, G. 1995. Cover-
age of confidence intervals in sequential steady-state simulation.
In Proceedings of the 1995 EUROSIM Congress.

Quinlan, J. R. 1992. Learning with continuous classes. In Pro-
ceedings of the 5th Australian Joint Conference on Artificial In-
telligence, 343-348. Singapore: World Scientific.

Sellner, B.; Heger, F. W.; Hiatt, L. M.; Simmons, R.; and Singh,
S. 2006. Coordinated multi-agent teams and sliding autonomy
for large-scale assembly. Special Issue of the Proceedings of the
IEEE on Multi-Robot Systems. In Press.

Simmons, R., and Apfelbaum, D. 1998. A task description lan-
guage for robot control. In Proceedings of the Conference on
Intelligent Robots and Systems (IROS).

Skormin, V. A.; Tascillo, M. A.; and Nicholson, D. J. 1993. A
jitter rejection technique in a satellite-based lasercommunication
system. In Proceedings of NAECON 1993, volume 2, 1107-1115.

Vijayakumar, S., and Schaal, S. 2000. Locally weighted pro-
jection regression: An o(n) algorithm for incremental real time
learning in high dimensional spaces. In Proceedings of the Sev-
enteenth International Conference on Machine Learning (ICML
2000), volume 1, 288-293.

