Duration Prediction for Proactive Replanning

Brennan Sellner and Reid Simmons
bsellner@andrew.cmu.edu, reids@cs.cmu.edu
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

Proactive replanning attempts to predict scheduling problems
or opportunities and adapt to them throughout a schedule’s
execution. By continuously predicting a task’s remaining
duration, a proactive replanner is able to accommodate up-
coming problems or opportunities before they manifest them-
selves. We have developed a kernel density estimation-based
method for predicting a task’s duration distribution as it ex-
ecutes, and have integrated our prediction algorithm with an
existing planner based on heuristic repair. Our predictor al-
lows the planner to anticipate problems, or opportunities,
early enough to avoid, or take advantage of, them, result-
ing in executed schedules that score significantly higher on
a number of metrics. We have evaluated a limited form of
our approach in simulation, and present the results of our ex-
periments. Duration prediction achieves an average reward
28.5% higher than the baseline, with 35.9% more reward-
laden tasks executed within a fixed horizon.

Introduction

When working with others, humans often exchange infor-
mation about their progress on the tasks at hand and whether
they will likely complete their work on time. This allows
each individual to adapt his schedule to make the best use
of his time. For instance, the foreknowledge that a group
meeting will be delayed by an hour because the team leader
is caught in traffic allows everyone to take on an appropriate
task during their now-free window. Many planning and exe-
cution systems, however, do not predict how long executing
tasks will take to complete. Instead, they assume each task
will take as long as it was scheduled for and react only when
tasks complete early or over-run their scheduled times, re-
sulting in suboptimal execution.

Proactive replanning encompasses the prediction of prob-
lems, or opportunities, such as these, and the adaptation of
the schedule to avoid, or take advantage of, them before
they occur. This allows the proactive replanner to modify
its schedule early enough to accommodate the realities of
execution: by predicting the team leader’s late arrival from
his current location and the state of the roads, a proactive re-
planner would schedule additional tasks into the now-empty
hour for the remainder of the team, and move tasks aside to
accommodate the delayed meeting.

A vital element of proactive replanning is the prediction
of a task’s duration during its execution, a component we

refer to as duration prediction. Duration prediction is the
prediction of a task’s remaining duration, given a measure-
ment of its current state. Rather than predicting a single es-
timate of the duration, we estimate a distribution across the
possible task durations.

By predicting a duration distribution, it becomes possible
for the planner to engage in several new strategies that are
unattainable if we simply predict a scalar duration. One such
strategy is multi-metric optimization. Because the form of
the duration distribution varies greatly between tasks, reduc-
ing the time allocated to two tasks by the same amount will
have different effects on the likelihood that each task will
overrun its new scheduled time. The planner will be able to
leverage these differences to reason in a principled fashion
about trading off the likelihood of a task over-running its al-
located time against other metrics, such as makespan or total
reward.

Another planning capability we are researching is live
task modification, which consists of transferring agents be-
tween teams while tasks are executing. In order to do so, we
must be able to predict the effect of such a transfer. Since a
physical agent cannot be moved instantaneously, there will
be some uncertainty as to when it will join the receiving
team, affecting the utility of the transfer. In order to evaluate
the effect of a proposed live task modification in a principled
manner, we must begin with duration distributions of the ar-
rival time and receiving task. Scalar estimates of duration
provide insufficient information to accurately reason about
risk management and the utility of a live task modification.
For instance, with a scalar duration estimate, it is impossible
to predict the likelihood that the transferred agent will arrive
in time to be useful, and small perturbations in the available
data could result in large changes in the predicted usefulness
of a transfer.

We have developed a kernel density estimation-based ap-
proach to duration prediction that enables the estimation of
the duration distribution given relatively sparse training data,
in addition to a measure of the task’s current state. Train-
ing data is necessarily sparse, since the state space of tasks
usually involves several continuous dimensions, making it
extremely difficult to collect a dense set of data outside of
simulation. This necessitates the use of function approxima-
tion techniques to estimate the duration distribution.

Kernel density estimation (KDE) is a nonparametric es-

timation method related to histograms that allows arbitrary
distributions to be easily approximated from training data,
without making a priori assumptions about the form of the
underlying distribution (Silverman 1986). This flexibility
makes KDE well-suited to problems such as ours, where the
duration distribution of a task can take on any form due to
potential failures, environmental variations, or other factors.

We have evaluated our approach to duration prediction us-
ing the ASPEN planner (Chien ez al. 2000b) and a high-level
stochastic execution simulator. In this initial evaluation, we
predict the duration of the task as the mean of its distribu-
tion, and evaluate the effect of predicting miscoordinations
on the final executed schedule. We have not yet evaluated
live task modification, nor multi-metric optimization. Our
experimental results indicate that the use of duration predic-
tion increases the total reward and number of executed tasks
over the baseline by a statistically significant degree: 28.5%
greater reward is achieved, with 35.9% more reward-laden
tasks executed within a fixed horizon.

Related Work
Duration Prediction

Although, to our knowledge, no existing planning/execution
systems dynamically predict the remaining duration of a
task, much research has been performed on various aspects
of function approximation. We are interested in predicting a
distribution across a continuous metric (remaining duration)
given a (potentially large) collection of continuous and dis-
crete state inputs (the current task state), under the Marko-
vian assumption. There are two elements to this problem:
(1) predicting the duration distribution at a specific point in
the state space, and (2) generalizing this to allow predictions
across the entire space with relatively sparse training data.

The first portion of the problem has been well-studied by
the function approximation community. Parametric distribu-
tions, such as the gamma and normal, can be fit to arbitrary
data using approaches such as maximum likelihood estima-
tion (Kay 1993). However, parametric distributions make
assumptions about the underlying distribution that may not
hold, especially when predicting the duration of tasks exe-
cuted in dynamic, uncertain environments.

Nonparametric approaches such as thin-plate splines
(Bookstein 1989) and piecewise linear regression are able
to fit arbitrary functions, and in general are sufficient for
the first portion of the problem. However, they break down
when generalizing across larger numbers of dimensions.

Approaches such as multivariate adaptive regression
splines (Friedman 1991), locally weighted projection regres-
sion (Vijayakumar & Schaal 2000), model trees (Belker,
Hammel, & Hertzberg 2003) (Quinlan 1992), ensemble re-
gression modeling (Merkwirth et al. 2004), and neural net-
works are capable of approximating functions from high-
dimensional input spaces. While all could in theory be uti-
lized for duration prediction, fitting times tended to be long
and over-fitting often occurs in our domain.

We have selected a modified form of kernel density esti-
mation (KDE) (Silverman 1986) as our prediction method.
KDE is a relatively simple nonparametric approach that al-

lows the estimation of arbitrary distributions. Distributions
can be generated relatively quickly from multi-dimensional
data, and are not subject to any assumptions about the struc-
ture of the distribution. KDE will be discussed in detail in
the Approach section.

Planning and Execution

Integrating duration prediction with a planning and execu-
tion system imposes a number of constraints on the planner
and the architecture it fits into. In order to make the most
use of duration prediction, the planner must support durative
actions, temporal constraints, metric resources, and be able
to quickly replan or repair a plan in response to feedback
from the executive. Three planners that meet these require-
ments are ASPEN (Chien et al. 2000b), EUROPA (Frank &
Jonsson 2003), and IxTeT (Laborie & Ghallab 1995). We
have used ASPEN as the basis of our work to date, as AS-
PEN’s most-commitment strategy makes the implementa-
tion of proactive replanning somewhat less complex. How-
ever, we are not aware of any fundamental problems that
would preclude the use of proactive replanning with least-
commitment planners.

In addition to the planner requirements, duration predic-
tion needs a tight connection between planner and execu-
tive: the executive must be able to provide the planner with
relatively high-frequency state updates. Classic three-layer
architectures such as 3T (Bonasso et al. 1997) and AT-
LANTIS (Gat 1992) generally have planning/executive ties
that are too loose to support duration prediction. LAAS’s
unnamed architecture (Alami et al. 1998) and CLARAty
(Nesnas et al. 2003) both encapsulate planning and exe-
cution into a single layer, and provide sufficient pathways
between planner and executive. LAAS uses the IxTeT plan-
ner, while CLARAty has two executives available: CASPER
(Chien et al. 2000a) and CLEaR (Estlin et al. 2001).
CASPER uses the ASPEN planner and a simple executive,
while CLEaR extends CASPER with a TDL-based (Sim-
mons & Apfelbaum 1998) executive. While both LAAS’s
architecture and CLARAty are amenable to duration predic-
tion, we chose CLARAty and CASPER due to our use of
ASPEN. For our initial investigations, we opted for the sim-
pler CASPER executive, as we do not yet need the flexibility
of CLEaR, although we may move from CASPER to CLEaR
in the future. IDEA (Muscettola et al. 2002) makes use of
EUROPA and also is flexible enough to support our work.

Approach

Duration prediction allows the planner to recognize future
scheduling problems and opportunities in time to address or
take advantage of them. For instance, if a task is predicted
to over-run, it will delay other tasks, potentially creating op-
portunities to insert tasks into the predicted window of now-
idle time. Without duration prediction, the planner would
miss such opportunities. In addition, this provides the plan-
ner with a longer time window in which to repair or optimize
the plan before execution reaches the problem point. This re-
duces the likelihood that execution must be paused to allow
the planner to resolve scheduling difficulties, and increases
overall efficiency.

Initial Schedule

Agent 1 |Task A
(@) f—————— Task C

Task A Over-runs, without Prediction

ix
Agent 1 |Task A il
(b)

l" i"
Agent1 |[Task A

Figure 1: Predicting the remaining duration of executing
tasks allows the planner to make use of opportunities pre-
sented by task over-runs.

Duration prediction allows the prediction of two classes
of execution anomalies: under-runs and over-runs. When a
task is predicted to under-run, setup actions for any subse-
quent tasks may be started early, decreasing or eliminating
dead time between tasks. When an over-run is predicted,
agents participating in now-delayed multi-agent tasks are
able to fill the window with useful work, rather than incre-
mentally waiting until the slow task completes. If prediction
were unavailable, there would be no way to know whether
the over-running task would complete in the next second or
in half an hour, and agents committed to the delayed multi-
agent tasks would lie idle until the slow task completed, un-
able to perform any useful work in the meantime.

For instance, Figure 1 depicts a canonical example of
an over-running task. In the initial schedule (Figure 1(a)),
agents 1 and 2 perform individual tasks (A and B) prior to a
group task (C). Suppose that task A over-runs, as presented
in Figure 1(b), with the over-run occurring at point Y. If du-
ration prediction is not being performed, the planner will not
realize in time that there may be space for an additional task
in agent 2’s schedule. However, if the planner is able to pre-
dict the over-run by point X, agent 2 will be able to execute
task D earlier (Figure 1(c)). This both reduces the makespan
of this segment of the schedule and provides additional time
for other tasks to be scheduled later on.

Duration prediction also enables the exploitation of
under-runs. Consider the scenario presented in Figure 2:
agent 1 performs the single-agent task A, after which agents
1 and 2 are scheduled to execute the multi-agent task B. The
BPrep task is a setup task for task B, and must be performed
immediately prior to B. The initial schedule is depicted in
Figure 2(a).

If task A completes early (Figure 2(b)), BPrep and B may
in turn be started early, reducing the overall makespan. If
the planner does not predict this early completion, the only
optimization available is to start BPrep immediately upon
A’s (early) completion (Figure 2(c)). However, this is inef-
ficient, as BPrep may be executed in parallel with A. If the

Initial Schedule

Agent 1 Task A
(a)
Agent 2 BPrep
Task A Under-runs
Agent 1 Task A onioinal
I U E—
Agent 2 BPrep
Without Prediction
Agent 1 Task A
(c)
Agent 2 BPrep
With Prediction
Agent 1 Task A
(d)
Agent 2 BPrep

W N

Figure 2: Duration prediction allows the planner to start
setup tasks early when a preceding task is predicted to under-
run.

planner were able to predict A’s true completion time prior
to point N, it would be able to start BPrep even earlier, real-
izing a further reduction in makespan. Ideally, the prediction
would be made prior to point M (that is, Length(BPrep)
seconds before A’s early completion), allowing B to be
scheduled immediately after A, and BPrep to be executed
entirely in parallel with task A (Figure 2(d)).

The goal of duration prediction is to predict a distribution
across the possible durations of the remainder of an execut-
ing nondeterministic task, in order to allow the planner both
to take advantage of execution anomalies and to support ad-
ditional functionality, such as live task modification. When
performing duration prediction, we assume an estimate of
the task’s current state is available, as well as a relatively
sparse corpus of data from previous executions. The ma-
jority of state variables are continuous, with a sprinkling of
discrete dimensions. The training data consists of a series
of observations from previous executions of the task, and is
not guaranteed to cover the state space, much less provide
a large number of observations at each state. While train-
ing data is easy to obtain in simulated environments, it is
difficult and expensive to collect when working with actual
robots.

Prediction Method

We use a form of kernel density estimation (KDE) (Silver-
man 1986) to predict duration distributions. KDE is a non-
parametric method related to histograms that is used to es-
timate an arbitrary distribution from training data. A his-
togram can be thought of as a set of unit-height blocks,
where each observation generates a block. The blocks are

aligned with the histogram bins into which the correspond-
ing observations fall, and are stacked (summed) when multi-
ple blocks fall into a single bin. A simple kernel density es-
timator performs in a similar fashion, except that each block
(the kernel) is centered on the observation, rather than on a
discrete bin. Summing these blocks results in a step-wise
function. In practice, rather than using a discrete block-like
kernel, KDE will use a smoother function, often the nor-
mal distribution. An example of this is depicted in Figure 3.
The five observations are denoted with circles. At each ob-
servation, we have centered a normal kernel (dashed lines),
and summed them to yield the estimated distribution (solid
line). The selection of the shape and bandwidth of the ker-
nel affect the resulting distribution. In the case of a normal
kernel, the bandwidth is the standard deviation of the kernel
distribution. If it is too narrow, the result will have too many
modes; too wide, and the distribution will become an undif-
ferentiated mass. In these experiments, we have found that
a bandwidth of 2.5 time units yields reasonable results.

Kernel Density Estimation
0.03 . : ; :

T T
O Observations

— — —Kernels

Estimated Distribution

0.025

0.02

0.015

Probability

0.01f

0.005

L7 L
40 50 60 70 80 90 100
Duration

Figure 3: A simple example of kernel density estimation.
Kernels (dashed lines) are centered at each of the five du-
ration observations (plotted as ‘o’s), then the kernels are
summed to build the estimated distribution (solid line).

Denote the bandwidth as h, the kernel function as
K (z,h), and let there be n observations with duration val-
ues z;. The density of the distribution at a duration x
is then the sum of the density contributed by the n ker-
nels: f(z) = 13" K (x—ax;h), where in our case

~n

K(z,h) = h\}ﬂexp (—%) and h = 2.5.

We actually use a weighted form of KDE in order to rep-
resent the belief that observations from points near the task’s
current state are more relevant. In this version of KDE,
each observation is assigned a relative weight w;, where
> ,w; = 1. This allows observations “closer” to the
task’s current state to be weighted more. The density func-
tion is nearly identical to the canonical KDE approach, sim-
ply replacing the uniform weighting with the observation-
specific weight: f(z) = >, w; K (x — x4, h)

Using KDE, it is straightforward to transform a weighted

set of durations into the desired distribution. However, the
question of how to select and weight the appropriate set re-
mains.

Let us refer to the current task state as the guery point,
a tuple @ of length d, where d is the dimensionality of the
task’s state space and () is the current value of the jth state
variable. Note that each observation is a tuple of length d+1,
consisting of the state and the duration observed there. We
must now determine the set of observations and associated
weights that KDE will use to build the duration distribution.
We do so by applying a query kernel along each dimension
of the state space (Figure 4) and combining the resulting
weights for each observation. A query kernel is a normal
distribution centered at ;, with bandwidth &, that is used
to calculate the weight of each observation for dimension j.
The values of h; are empirically selected, and depend upon
the characteristics of the task. For instance, a continuous di-
mension may have a relatively large h;, while a discrete di-
mension that represents a few very different cases may use a
very small h; to keep the cases segregated.

One-Dimensional Query Kernel
0.05 : :

T
+ Query point
O Observations |4

Query kernel

0.045

0.04

0.035

0.03F

0.025

Weight

0.02

0.015

0.01f

0.005

OW3,j =0.0410
OWA,J =0.0303
© waJ =0.0194

5 o, = 0.0022
3 oy, = 0.0022

20 30
State Dimension

IN

60

Figure 4: The query point (the current value of this dimen-
sion’s state variable) is denoted with a ‘+’, candidate obser-
vations with ‘0’s, and the query kernel as the solid curve.
The weight of an observation 4 for this dimension, w; j, is
the likelihood that the observation would be drawn randomly
from the query kernel.

The weight in dimension j of the ith observation is sim-
ply the likelihood that x; ; (the observation’s value for di-
mension j) would be randomly drawn from the query ker-
nel: w;; = K (x;; — Qj, h;). To limit computation, we
consider observations only where w; ; > €.

This weight calculation is performed for all j dimen-
sions, resulting in a set of weights w; ; for the ¢ observa-
tions. The final weight of an observation to be used for KDE
is the normalized product of these per-dimension weights:
_ Hj:l Wi

S, v
are calculated, building the duration distribution is simply
a matter of performing KDE as outlined above with the

w; . Once these per-observation weights

weights w; and the observed durations x; g4 1.

Planner Integration

We have integrated duration prediction with the repair-based
ASPEN planner (Chien ef al. 2000b) and CASPER exec-
utive (Chien et al. 2000a). Although ASPEN lacks ex-
plicit multi-agent support, its capabilities are a good fit to
the needs of duration prediction during execution. Given a
set of goals, a plan (initially empty), and a set of resource
timelines representing agents and their locations, ASPEN
performs iterative plan repair to resolve conflicts and other
flaws in the schedule. Repair and optimization steps may
be interleaved as the state of the system is updated, using
a most-commitment strategy (all variables are grounded as
early as possible). This strategy makes the evaluation of
metrics and projections of resource usage much simpler, but
reduces the plan’s flexibility.

We have tightened the integration between planner and
executive by providing a conduit for state updates to flow
to the planner at every timestep. As the updates arrive, new
duration predictions are triggered, and ASPEN’s schedule is
updated. ASPEN is then able to repair any resulting con-
flicts or take advantage of opportunities that have become
apparent. ASPEN represents tasks as having a single dura-
tion, so we utilize the mean of the predicted distribution as
the expected duration for a task. We do not currently use
the duration distributions to perform multi-metric optimiza-
tion or live task modification, but these are active areas of
research.

Execution Modeling

Task execution is stochastically modeled using a represen-
tation similar to Augmented Transition Networks (Woods
1970). The models introduce a degree of uncertainty akin
to that found in real-world robotic teams. They model only
the high-level progress of a task, including nonterminal fail-
ures, and report task-level state to the CASPER executive.
For instance, while individual components of agents (such
as manipulators or sensors) are not simulated, events such
as an agent becoming stuck in the sand are represented. Fig-
ure 5 depicts the model used for the Move task. Execution
begins in the Moving state, and one state transition is made
per time unit. During normal operation, the distance traveled
is incremented by a value drawn from a normal distribution,
and there is a 1% chance of the agent becoming stuck dur-
ing any given time step. Once the agent becomes stuck, it
must recover before further progress can be made towards
the goal.

Such models are used both during execution and to pro-
vide the initial observations needed to build the KDEs used
by duration prediction. The amount of training data pro-
vided varies according to the uncertainty associated with the
task, ranging from an average of 13 to 60 data points per cell,
with no guarantee that any given cell will contain data. Note
that the actual variables are continuous, and KDE does not
require discretization; these reference figures are derived by
discretizing the state space into cells with the same size as
the average progress made during a time step. For instance,
the Move task makes an average of 1 unit of progress per

Arrived

dist >= goal goal == 50

Move

dist < goal && !stuck

dist += N(1, 0.25)
stuck = uniform(0,1) <= 0.01
time++

Moving

Stuck in Sand
dist < goal && stuck

Recovered

recover_dist == 0 recover_dist = 50

time++

time++

Dig Out

recover_dist > 0

Recovering

recover_dist -= 1
time++

Figure 5: The stochastic simulation model for Move. This
is used to simulate execution, and provides the state that is
used for duration prediction during execution. In addition,
this model is used offline to generate the observations used
by the KDE-based predictor.

time step, both when moving and recovering. Since the two
state variables (distance traveled and distance to recovery)
lie in the range [0, 50], this yields 50 * 50 = 2500 cells.
34,776 training observations were made available for Move,
yielding an average coverage of 13.9 observations per cell.
While this may appear to be a large amount of training data,
it is unevenly distributed, and nearly all of the duration dis-
tributions are highly multi-modal, thus requiring more data
to achieve even a rough approximation. We will be exam-
ining the effects of varying the available amount of training
data in the near future.

Results

We have evaluated the effectiveness of duration prediction
for proactive replanning by performing a series of experi-
ments in simulation.

Scenario

The scenario represents a subset of the construction of a lu-
nar outpost, and includes three agents, three sites, and eight
types of tasks (Table 1, Figure 6). Agents are assumed to be
homogeneous, and can participate in only one task at a time.
Each task has an associated reward, may require any number
of agents, may be constrained to occur at a given site, and/or
may involve the moving of agents from one site to another.
In general, there are two classes of tasks: cooperative and
solo. Cooperative tasks require more than one agent, and
generally have higher rewards and durations than solo tasks.

The objective is to maximize total reward within a fixed
horizon, which roughly equates to maximizing the number
of reward-laden tasks that are executed. Duration prediction
improves the final executed schedule by allowing tasks to be

Task Reward ﬁg:gzz Location State Variables Pl:[(,)iil; f;iel[))er M:.i:n?lsl::::on
Move 0 |1 | End: Anyahere | Brrorrecovery: 1050] | V(1-0:20) 0
Sky Observation 15 1 Anywhere Progress: [0,1] N(0.05,0.01) 18
Soil Observation 15 1 Anywhere Progress: [0,1] N(0.025,0.01) 38
ilflzlijriltta;nance 30 ! Habitat Err(r)grrizsc:ogoe’rly]: [0,20] N(0.025,0.01) 50
Mo] | || D00 v0s00 | o
Lay Cable 120 2 g;ad“ Cff)i”ir;at g;rséi“r‘;ig‘e’:;d[o[%g]o] N(0.3,0.25) 258
R NN |3l bt OO
Comm Setup 50 2 | Comm Eﬁfﬁ?&o@g 0200 | N (0:05.0.01) 18

Table 1: Scenario tasks and relevant statistics. All state variables are continuous. In this scenario, all variables begin at zero,
with the task being completed when the ‘Progress’ or ‘Distance moved’ variable reaches its maximum. At each time step, the
progress made or distance traveled for each task is incremented by a value drawn from the indicated normal distribution. Tasks
with an ‘Error recovery’ variable include nonterminal failures, as diagrammed in Figure 5.

< Soil Observation (1)
{1 Sky Observation (1)

Lander

p

Soil Observation (1) ¥ Soil Observation (1)
Sky Observation (1) & Q) Sky Observation (1)
Comm Setup (2) & \/ $ Maintenance (1)

Lay Cable (2) Habitat

Communications
Site

Figure 6: The Lunar Outpost scenario. Numbers in paren-
theses denote the number of agents needed to perform each
task. Tasks during which the agent must remain at a site are
denoted with a dashed circle.

opportunistically scheduled when over-runs and under-runs
occur during execution.

Experimental Conditions

We evaluated two experimental conditions: baseline and du-
ration prediction. We generated 20 initial schedules using
ASPEN, which we have augmented with heuristics that ad-
dress multi-agent tasks. We executed each of the schedules
five times under each condition, resulting in 100 runs each.

Baseline In the baseline case, no duration prediction is
performed. Instead, when a task finishes early, its duration
on the schedule is instantly changed from the expected to the
final value. When a task over-runs, its duration is increased
incrementally, until it completes.

At every timestep, ASPEN evaluates whether there are

any conflicts in the schedule. If there are, it repairs them: if
the conflicts are small in duration (likely resulting from the
incremental increase of over-running tasks), it will attempt
to right-shift tasks to resolve them. If this fails, ASPEN’s
general repair algorithm will be invoked until the schedule
is once again conflict-free. After all conflicts have been re-
paired, ten iterations of optimization are performed, with re-
pair of any new conflicts occurring after each. This allows
the planner to repair any inefficiencies introduced by the ini-
tial repair cycle.

If there are no initial conflicts, ASPEN performs one it-
eration of a limited optimization algorithm at each timestep.
In particular, it checks for agents that are free at the current
time and have sufficient time prior to their next task to per-
form a solo task with non-zero reward. If such an agent can
be found, a task is heuristically selected and scheduled.

Duration Prediction The duration prediction condition is
identical to the baseline, except that the durations of all
currently executing tasks are updated at every timestep, as
discussed above. When tasks are predicted to over-run or
under-run, this provides opportunities for the optimization
algorithm to schedule additional tasks.

Data and Discussion

When using duration prediction, the planner is able to sched-
ule 28.6% more tasks on average than the baseline and
achieve a 28.5% greater total reward (Table 2). When unre-
warding tasks are excluded, we can see that duration predic-
tion almost exclusively adds tasks with non-zero reward: the
number of additional executed tasks and executed rewarded
tasks are very similar.

While the average increases are promising, the data is
quite noisy, as we can see from the large standard devia-
tions. This is due to the stochastic nature of both execu-
tion and ASPEN’s heuristic approach to repair and optimiza-

Reward Executed Tasks E Rewarded Execution Time Runs
xecuted Tasks
Baseline 1517.80 (847.09) 78.79 (44.68) 57.43 (33.78) 1382.03s (1041.28s) 100
Duration Prediction 1951.15 (833.58) 101.30 (47.41) 78.07 (38.66) 2424.87s (1178.02s) 100
Prediction - Baseline | 433.35 (+28.5%) 22.51 (+28.6%) 20.64 (+35.9%) 1042.84s (+75.5%) —
p-value 0.000075 0.0000067 0.000056 — —

Table 2: Experimental results. All data is reported as mean (standard deviation). The difference between “Executed Tasks” and
“Executed Rewarded Tasks” is the number of zero-reward tasks performed; in this scenario, these consisted of the Move tasks.

p-values are the result of a paired T-test comparing the baseline and prediction data.

tion. However, we performed a paired T-test comparing the
baseline with duration prediction using the reward, executed
tasks, and executed rewarded tasks data. In all three cases,
the use of duration prediction resulted in statistically signif-
icant increases, at a confidence level of p = 0.01. See the
last row of Table 2 for specific p-values.

These improvements come at a cost, however: overall
planning time increases by 75% on average. We have not
yet attempted to optimize our approach, and expect this cost
to decrease significantly as research continues.

Future Work

Duration prediction, while useful in its own right, is also a
tool that can enable much greater improvements in planning
and execution. In particular, we have previously proposed
live task modification (Sellner & Simmons 2006), in which
the composition of teams currently executing tasks may be
adjusted in response to the realities of execution. For in-
stance, if two tasks are being performed in parallel, but we
predict that one will finish much later than the other, agents
should be reassigned to balance the tasks and reduce the
overall makespan of the schedule. Live task modification
requires duration distributions, rather than simple scalar es-
timates, to reason about factors such as the likelihood of a
transfer being useful.

In reasoning about live task modification, we must predict
the effect of transferring an agent. During actual execution,
such transfers are not instantaneous, nor deterministic. As
a result, we will need to predict the effect on task duration
of an additional agent arriving at an uncertain time in the
future. Calculating this exactly requires projecting the task’s
state into the future, estimating the duration distribution at
each possible state, and aggregating those distributions to
produce a usable estimated distribution. We are currently
developing an approach that allows approximate estimation
without any knowledge of future states.

We will also examine whether the predicted distributions
can be integrated more tightly into the planner. Our current
approach represents the duration in ASPEN as the mean of
the predicted distribution, but this is clearly suboptimal in
some cases. For instance, when the distribution is multi-
modal, the mean often falls between modes. It may be useful
to use the mean of the most likely mode, or modify ASPEN
to support a discrete distribution across durations. However,
the latter is likely to result in an unacceptable computation /
reward tradeoff. In either case, we will continue to maintain

duration distributions for use in multi-metric optimization
calculations and live task modification.

Finally, we plan to characterize how the effectiveness of
duration prediction varies as the amount of available training
data is changed. This should allow us to determine a reason-
able lower bound on the number of observations necessary
to provide a given level of execution-time improvement.

Conclusion

This paper has examined the utility of duration prediction,
especially with respect to its use as part of a proactive replan-
ning system. We also have discussed the capabilities enabled
by predicting distributions, rather than point estimates, and
presented our approach to doing so from relatively sparse
training data in a continuous state space. We experimentally
evaluated an initial implementation of duration prediction,
and found it yielded statistically significant gains of 28.5%
to 35.9%, depending on the metric being evaluated. While
duration prediction is an improvement in its own right, it is a
stepping stone toward more flexible and effective proactive
replanning systems that can predict problems during execu-
tion and fluidly reallocate agents in response.

References

Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research, Special Issue on Integrated Architectures for
Robot Control and Programming 17(4).

Belker, T.; Hammel, M.; and Hertzberg, J. 2003. Learning to
optimize mobile robot navigation based on htn plans. In Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA ’03), volume 3, 4136-4141.

Bonasso, R.; Firby, R.; Gat, E.; Kortenkamp, D.; Miller, D.; and
Slack, M. 1997. Experiences with an architecture for intelligent,
reactive agents. Journal of Experimental and Theoretical Artifi-
cial Intelligence 9(2-3):237-256.

Bookstein, F. L. 1989. Principal warps: Thin plate splines and
the decomposition of deformations. IEEE Transations on Pattern
Analysis and Machine Intelligence 11:567-585.

Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Rabideau,
G. 2000a. Using iterative repair to improve the responsiveness
of planning and scheduling. In Proceedings of the International
Conference on Al Planning Systems (AIPS).

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt,
B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Steb-
bins, G.; and Tran, D. 2000b. Aspen — automated planning and
scheduling for space mission operations. In Space Ops.

Estlin, T.; Volpe, R.; Nesnas, I.; Mutz, D.; Fisher, F.; Engelhardt,
B.; and Chien, S. 2001. Decision-making in a robotic architecture
for autonomy. In Proceedings of the International Symposium on
Artificial Intelligence, Robotics, and Automation in Space.

Frank, J., and Jonsson, A. 2003. Constraint-based attribute and
interval planning. Journal of Constraints, Special Issue on Con-
straints and Planning 8(4).

Friedman, J. H. 1991. Multivariate adaptive regression splines
(with discussion). Annals of Statistics 19:1-141.

Gat, E. 1992. Integrating planning and reacting in a heteroge-
neous asynchronous architecture for controlling real-world mo-
bile robots. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI).

Kay, S. M. 1993. Fundamentals of Statistical Signal Processing:
Estimation Theory. Prentice Hall. chapter 7.

Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI).

Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl,
M.; and Lengauer, T. 2004. Ensemble methods for classifica-
tion in cheminformatics. Journal of Chemical Information and
Modeling 44(6):1971-1978. DOI: 10.1021/ci049850e.

Muscettola, N.; Dorais, G.; Fry, C.; Levinson, R.; and Plaunt, C.
2002. Idea: Planning at the core of autonomous reactive agents.
In Proceedings of the 3rd International NASA Workshop Planning
and Scheduling for Space.

Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Estlin,
T.; and Kim, W. S. 2003. Claraty: An architecture for reusable
robotic software. In Proceedings of the SPIE Aerosense Confer-
ence.

Quinlan, J. 1992. Learning with continuous classes. In Proceed-
ings of the 5th Australian Joint Conference on Artificial Intelli-
gence.

Sellner, B., and Simmons, R. 2006. Towards proactive replanning
for multi-robot teams. In Proceedings of the 5th International
Workshop on Planning and Scheduling in Space 2006.

Silverman, B. W. 1986. Density estimation for statistics and data
analysis. London, UK: Chapman and Hall.

Simmons, R., and Apfelbaum, D. 1998. A task description lan-
guage for robot control. In Proceedings of the Conference on
Intelligent Robots and Systems (IROS).

Vijayakumar, S., and Schaal, S. 2000. Locally weighted projec-
tion regression. In Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), volume 1, 288—
293.

Woods, W. A. 1970. Transition network grammars for natual
language analysis. CACM 13 10:591-606.

