
Duration Prediction for Proactive Replanning

Brennan Sellner Reid Simmons

Abstract— Proactive replanning attempts to predict
scheduling problems or opportunities and adapt to them
throughout a schedule’s execution. By continuously predicting
a task’s remaining duration, a proactive replanner is able
to accommodate upcoming problems or opportunities before
they manifest themselves. We have developed a kernel den-
sity estimation-based method for predicting a task’s duration
distribution as it executes, and have integrated our prediction
algorithm with an existing planner based on heuristic repair.
Our predictor allows the planner to anticipate problems, or
opportunities, early enough to avoid, or take advantage of,
them, resulting in executed schedules that score significantly
higher on a number of metrics. We have evaluated a limited
form of our approach in simulation, and present the results of
our experiments. The addition of duration prediction resulted
in a 11.7% improvement in average reward. Compared with
an omniscient planner, this is 45.0% of the maximum possible
improvement.

I. INTRODUCTION

When working with others, humans often exchange in-

formation about their progress on the tasks at hand and

whether they will likely complete their work on time. This

allows each individual to adapt his schedule to make the

best use of his time. For instance, the foreknowledge that

a group meeting will be delayed by an hour because the

team leader is caught in traffic allows everyone to take on

an appropriate task during their now-free window. Many

planning and execution systems, however, do not predict

how long executing tasks will take to complete. Instead, they

assume each task will take as long as it was scheduled for

and react only when tasks complete early or over-run their

scheduled times, resulting in suboptimal execution.

Proactive replanning encompasses the prediction of prob-

lems, or opportunities, such as these, and the adaptation of

the schedule to avoid, or take advantage of, them before

they occur. This allows the proactive replanner to modify

its schedule early enough to accommodate the realities of

execution: by predicting the team leader’s late arrival from

his current location and the state of the roads, a proactive

replanner would schedule additional tasks into the now-

empty hour for the remainder of the team, and move tasks

aside to accommodate the delayed meeting.

A vital element of proactive replanning is the prediction

of a task’s completion time throughout its execution, a

component we refer to as duration prediction. Duration

prediction estimates a task’s remaining run time, given a

measurement of its current state. Rather than computing a

B. Sellner and R. Simmons are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
bsellner@andrew.cmu.edu, reids@cs.cmu.edu

single estimate of the duration, we estimate a distribution

across the possible task durations.

By predicting a duration distribution, it becomes possible

for the planner to engage in several new strategies that are

unattainable if we simply compute a scalar duration. One

such strategy is multi-metric optimization. Because the form

of the duration distribution varies greatly between tasks,

reducing the time allocated to two tasks by the same amount

will have different effects on the likelihood that each task will

overrun its new scheduled time. The planner will be able to

leverage these differences to reason in a principled fashion

about trading off the likelihood of a task over-running its

allocated time against other metrics, such as makespan or

total reward.

Another planning capability we are researching is live task

modification, which consists of transferring agents between

teams while tasks are executing. In order to do so, we must

be able to predict the effect of such a transfer. Since a

physical agent cannot be moved instantaneously, there will be

some uncertainty as to when it will join the receiving team,

affecting the utility of the transfer. In order to evaluate the

effect of a proposed live task modification in a principled

manner, we must begin with distributions of the arrival

time and the duration of the receiving task. Scalar estimates

provide insufficient information to accurately reason about

the utility of a live task modification. For instance, with

a scalar duration estimate, it is impossible to predict the

likelihood that the transferred agent will arrive in time to

be useful.

We need execution data in order to estimate the duration

distribution, since most realistic tasks involve stochasticity

that cannot be accurately foreseen. This training data is nec-

essarily thin, since the state space of tasks usually involves

several continuous dimensions, making it extremely difficult

to collect a dense set of data outside of simulation. This

necessitates the use of function approximation techniques to

estimate the duration distribution. We have developed a ker-

nel density estimation-based approach to duration prediction

that enables the estimation of duration distributions given

relatively sparse training data.

We have evaluated our approach using the ASPEN planner

[1] and a high-level stochastic execution simulator. Our ex-

perimental results indicate that the use of duration prediction

increases the total reward over the baseline by a statistically

significant degree. The increase amounts to 45.0% of the

possible improvement, as measured by building plans with

complete prior knowledge of the tasks’ final durations.

II. RELATED WORK

A. Duration Prediction

Although, to our knowledge, no existing

planning/execution systems dynamically predict the

remaining duration of a task, much research has been

performed on various aspects of function approximation.

We are interested in predicting a distribution across a

continuous metric (remaining duration) given a (potentially

large) collection of continuous and discrete state inputs (the

training data and current task state), under the Markovian

assumption. There are two elements to this problem: (1)

predicting the duration distribution at a specific point in the

state space, and (2) generalizing this to allow predictions

across the entire space with relatively sparse training data.

The first portion of the problem has been well-studied by

the function approximation community. Parametric distribu-

tions, such as the gamma and normal, can be fit to arbitrary

data using approaches such as maximum likelihood estima-

tion [2]. However, parametric distributions make assump-

tions about the underlying distribution that may not hold,

especially when predicting the duration of tasks executed in

dynamic, uncertain environments.

Nonparametric approaches such as thin-plate splines [3]

and piecewise linear regression are able to fit arbitrary

functions, and in general are sufficient for the first portion of

the problem. However, they break down when generalizing

across larger numbers of dimensions.

Approaches such as multivariate adaptive regression

splines [4], locally weighted projection regression [5], and

neural networks are capable of approximating functions from

high-dimensional input spaces. While all could be utilized

for duration prediction, when we applied them to our domain

fitting times tended to be long and over-fitting often occurred.

We have selected a modified form of kernel density

estimation (KDE) [6] as our prediction method. KDE is a

nonparametric method that is able to estimate an arbitrary

distribution from training data without making assumptions

about the structure of the underlying distribution. KDE is not

subject to over-fitting, as it operates directly from the data,

but is able to interpolate to a degree between data points.

KDE will be discussed in detail in the Approach section.

B. Planning and Execution

Integrating duration prediction with a planning and execu-

tion system imposes a number of constraints on the planner

and the architecture it fits into. In order to make the most

use of duration prediction, the planner must support durative

actions, temporal constraints, and be able to quickly replan

or repair a plan in response to feedback from the executive.

While a number of planners meet these requirements (e.g.

EUROPA [7] and IxTeT [8]), we have used ASPEN [1] as

the basis of our work to date, as ASPEN’s most-commitment

strategy makes the implementation of proactive replanning

somewhat less complex. However, we are not aware of

any fundamental problems that would preclude the use of

proactive replanning with least-commitment planners.

In addition to the planner requirements, duration predic-

tion needs a tight connection between planner and executive:

the executive must be able to provide the planner with

relatively high-frequency state updates. Classic three-layer

architectures such as 3T [9] and ATLANTIS [10] generally

have planning/executive ties that are too loose to support

duration prediction. LAAS [11] and CLARAty [12] both

encapsulate planning and execution into a single layer, and

provide sufficient pathways between planner and executive.

LAAS uses the IxTeT planner, while CLARAty has two ex-

ecutives available: CASPER [13] and CLEaR [14]. CASPER

uses the ASPEN planner and a simple executive, while

CLEaR extends CASPER with a TDL-based [15] executive.

While both LAAS’s architecture and CLARAty are amenable

to duration prediction, we chose CLARAty and CASPER

due to our use of ASPEN. For our initial investigations, we

opted for the simpler CASPER executive, as we do not yet

need the flexibility of CLEaR, although we may move from

CASPER to CLEaR in the future. IDEA [16] makes use of

EUROPA and also is flexible enough to support our work.

III. APPROACH

Duration prediction allows the planner to recognize future

scheduling problems and opportunities in time to address or

take advantage of them. Specifically, it allows the prediction

of two classes of execution anomalies: over-runs and under-

runs.

When an over-run is predicted, agents participating in

now-delayed multi-agent tasks are able to fill the window

with useful work, rather than idling until the slow task

completes. If prediction were unavailable, there would be no

way to know whether the over-running task would complete

in the next second or in half an hour, and agents committed

to the delayed multi-agent tasks would lie idle until the slow

task completed, unable to perform any useful work in the

meantime.

When a task is predicted to under-run, setup actions

for any subsequent tasks may be started early, decreasing

or eliminating dead time between tasks. Fig. 1 depicts a

canonical example of an under-running task. Here, agent

1 performs the single-agent task A, after which agents 1

and 2 are scheduled to execute the multi-agent task B. The

BPrep task is a setup task for task B, and must be performed

immediately prior to B. The initial schedule is depicted in

Fig. 1(a).

If task A completes early (Fig. 1(b)), BPrep and B may

in turn be started early, reducing the overall makespan. If

the planner does not predict this early completion, the only

optimization available is to start BPrep immediately upon A’s

(early) completion (Fig. 1(c)). However, this is inefficient,

as BPrep may be executed in parallel with A. If the planner

were able to predict A’s true completion time prior to point N,

it would be able to start BPrep even earlier, realizing a further

reduction in makespan. Ideally, the prediction would be made

prior to point M, allowing B to be scheduled immediately

after A, and BPrep to be executed entirely in parallel with

task A (Fig. 1(d)). By providing the planner with forewarning

Fig. 1. Duration prediction allows the planner to start setup tasks early
when a preceding task is predicted to under-run.

of under-runs and over-runs such as this, duration prediction

enables the execution of more efficient schedules.

In addition to enabling more efficient execution, duration

prediction provides the planner with a longer time window in

which to repair or optimize the plan before execution reaches

the problem point. This reduces the likelihood that execution

must be paused to allow the planner to resolve scheduling

difficulties, and increases overall efficiency.

A. Prediction Method

We use a form of kernel density estimation (KDE) [6]

to predict duration distributions. KDE is a nonparametric

method related to histograms that is used to estimate an

arbitrary distribution from training data without making a

priori assumptions about the form of the underlying dis-

tribution. A histogram can be thought of as a set of unit-

height blocks, where each observation generates a block. The

blocks are aligned with the histogram bins into which the

corresponding observations fall, and are stacked (summed)

when multiple blocks fall into a single bin. A simple kernel

density estimator performs in a similar fashion, except that

each block (or kernel) is centered on the observation, rather

than on a discrete bin. Summing these blocks results in a

step-wise function. In practice, rather than using a discrete

block-like kernel, KDE utilizes a smoother function, such

as the normal distribution. An example of this is depicted in

Fig. 2. The five observations are denoted with circles. At each

observation, a normal kernel is centered (dashed lines), and

summed to yield the estimated distribution (solid line). The

selection of the shape and bandwidth of the kernel affects

the resulting distribution. In the case of a normal kernel, the

bandwidth is the standard deviation of the kernel distribution.

If it is too narrow, the result will have too many modes; too

wide, and the distribution will become an undifferentiated

mass. In the experiments reported here, we have found that

a bandwidth of 2.5 time units yields reasonable results.

Denote the bandwidth as h, the kernel function as K(x, h),
and let there be n observations with duration values xi.

The density of the distribution at a duration x is then

the sum of the density contributed by the n kernels:

f(x) = 1

n

∑n

i=1
K (x − xi, h), where in our case K(x, h) =

1

h
√

2π
exp

(

−
x2

2h2

)

and h = 2.5.

We use a weighted form of KDE in order to represent the

belief that observations from points near the task’s current

state are more relevant. In this version of KDE, each obser-

vation is assigned a relative weight wi, where
∑n

i=1
wi = 1.

The density function is nearly identical to the canonical KDE

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

b
a
b

il
it

y

Duration

Kernel Density Estimation

Observations

Kernels

Estimated Distribution

Fig. 2. A simple example of kernel density estimation. Kernels (dashed
lines) are centered at each of the five duration observations (plotted as ‘o’s),
then the kernels are summed to build the estimated distribution (solid line).

approach, simply replacing the uniform weighting with the

observation-specific weight: f(x) =
∑n

i=1
wiK (x − xi, h)

Let us refer to the current task state as the query point,

a tuple Q of length d, where d is the dimensionality of the

task’s state space and Qj is the current value of the jth state

variable. Note that each observation is a tuple of length d+1,

consisting of the state and the duration observed there. We

must now determine the set of observations and associated

weights that KDE uses to build the duration distribution.

We do so by applying a query kernel along each dimension

of the state space (Fig. 3). A query kernel is a normal

distribution centered at Qj , with bandwidth hj , that is used

to calculate the weight of each observation for dimension j.

The values of hj are empirically selected, and depend upon

the characteristics of the task. For instance, a continuous

dimension may have a relatively large hj , while a discrete

dimension that represents a few very different cases may use

a very small hj to keep the cases segregated.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

Q
j =

 3
0

State Dimension

W
e

ig
h

t

One−Dimensional Query Kernel

w
1
,j
 =

 0
.0

0
2
2

w
2
,j
 =

 0
.0

0
6
7

w
3
,j
 =

 0
.0

4
1
0

w
4
,j
 =

 0
.0

3
0
3

w
5
,j
 =

 0
.0

1
9
4

w
6
,j
 =

 0
.0

0
2
2

Query point

Observations

Query kernel

Fig. 3. The query point (the current value of this dimension’s state variable)
is denoted with a ‘+’, candidate observations with ‘o’s, and the query kernel
as the solid curve. The weight of an observation i for this dimension, wi,j ,
is the likelihood that the observation would be drawn randomly from the
query kernel.

The weight in dimension j of the ith observation is

simply the likelihood that xi,j (the observation’s value for

dimension j) would be randomly drawn from the query

kernel: wi,j = K (xi,j − Qj , hj). To limit computation, we

consider observations only where wi,j > ǫ.

This weight calculation is performed for all dimensions,

resulting in a set of weights wi,j for the observations.

The final weight of an observation to be used for KDE

is the normalized product of these per-dimension weights:

wi =

∏

d

j=1
wi,j

∑

n

i=1

∏

d

j=1
wi,j

. Once these per-observation weights

are calculated, building the duration distribution is simply

a matter of performing KDE as outlined above with the

weights wi and the observed durations xi,d+1.

B. Planner Integration

We have integrated duration prediction with the repair-

based ASPEN planner [1] and CASPER executive [13].

Although ASPEN lacks explicit multi-agent support, its

capabilities are a good fit to the needs of duration prediction

during execution. Given a set of goals, a (potentially empty)

plan, and a set of resource timelines representing agents

and their locations, ASPEN performs iterative plan repair

to resolve conflicts and other flaws in the schedule. Repair

and optimization steps may be interleaved as the state of the

system is updated, using a most-commitment strategy (all

variables are grounded as early as possible). This strategy

makes the evaluation of metrics and projections of resource

usage much simpler, but reduces the plan’s flexibility.

We have tightened the integration between planner and ex-

ecutive by providing a conduit for state updates to flow to the

planner at every timestep. As the updates arrive, new duration

predictions are triggered, and ASPEN’s schedule is updated.

ASPEN is then able to repair any resulting conflicts or

take advantage of opportunities that have become apparent.

ASPEN represents tasks as having a single duration, so we

utilize the mean of the predicted distribution as the expected

duration for a task. We do not currently use the duration

distributions to perform multi-metric optimization or live task

modification, but these are active areas of research.

C. Execution Modeling

Task execution is stochastically modeled using a represen-

tation similar to Augmented Transition Networks [17]. The

models introduce a degree of uncertainty akin to that found

in real-world robotic teams. They model only the high-level

progress of a task, including non-terminal failures, and report

task-level state to the CASPER executive. For instance, while

individual components of agents (such as manipulators or

sensors) are not simulated, events such as an agent becoming

stuck in the sand are represented. Fig. 4 depicts the model

used for the Move task. Execution begins in the Moving

state, and one state transition is made per time unit. During

normal operation, the distance traveled is incremented by a

value drawn from a normal distribution, and there is a 1%

chance of the agent becoming stuck during any given time

step. Once the agent becomes stuck, it must recover before

further progress can be made towards the goal. Models such

as this are used both during execution and to provide the

training data needed to build the KDEs used by duration

prediction.

IV. RESULTS

We have evaluated the effectiveness of duration prediction

for proactive replanning by performing a series of experi-

ments in simulation.

Fig. 4. The stochastic simulation model for Move. This is used to simulate
execution, and provides the state that is used for duration prediction during
execution. In addition, this model is used offline to generate the observations
used by the KDE-based predictor.

Fig. 5. The Lunar Outpost scenario. Numbers in parentheses denote the
number of agents needed to perform each task. Tasks during which the agent
must remain at a site are denoted with a dashed circle.

A. Scenario

The scenario represents a subset of the construction of

a lunar outpost, and includes three agents, three sites, and

eight types of tasks (Fig. 5, Table I). Agents are assumed to

be homogeneous, and can participate in only one task at a

time. Each task has an associated reward, may be constrained

to occur at a given site, and/or may involve the moving

of agents from one site to another. Different tasks require

different numbers of agents. In general, there are two classes

of tasks: cooperative and solo. Cooperative tasks require

more than one agent, and generally have higher rewards and

durations than solo tasks.

The objective is to maximize total reward within a fixed

horizon, which roughly equates to maximizing the number

of reward-laden tasks that are executed. During execution,

ASPEN evaluates at every timestep whether there are any

conflicts in the schedule. If there are, it repairs the conflicts

by first right-shifting tasks. If this fails, ASPEN’s general

repair algorithm is invoked until the schedule is conflict-

free. After all conflicts have been repaired, ten iterations of

optimization are performed, with repair of any new conflicts

occurring after each. This allows the planner to repair any

inefficiencies introduced by the initial repair cycle.

If there are no conflicts, ASPEN performs one iteration

of a limited optimization algorithm at each timestep. In

particular, it checks for agents that are free at the current time

and have sufficient time prior to their next task to perform

a solo task with non-zero reward. If such an agent can be

found, a task is heuristically selected and scheduled.

B. Experimental Conditions

We evaluated three experimental conditions: a baseline, an

“oracle” case, and duration prediction. We generated 20 ini-

tial schedules using ASPEN, which we have augmented with

heuristics that address multi-agent tasks. We executed each of

the schedules five times under the baseline condition and fifty

TABLE I

SCENARIO TASKS AND RELEVANT STATISTICS.

Task Reward
Agents

Needed
Location State Variables

Progress Per

Timestep

Duration from

Start (µ, σ)

Move 0 1
Start: Anywhere
End: Anywhere

Distance moved: [0,50]
Recovery progress: [0,50]

N(1, 0.25) 59.12 (39.59)

Sky Observation 15 1 Anywhere Progress: [0,1] N(0.05, 0.01) 18.16 (4.50)

Soil Observation 15 1 Anywhere Progress: [0,1] N(0.025, 0.01) 33.11 (7.21)

Habitat
Maintenance

30 1 Habitat
Progress: [0,1]
Recovery progress: [0,20]

N(0.025, 0.01) 41.65 (15.75)

Materials:
Lander → Habitat

300 3
Start: Lander
End: Habitat

Distance moved: [0,50]
Recovery progress: [0,50]

N(0.5, 0.1) 113.72 (27.82)

Lay Cable 120 2
Start: Habitat
End: Comm

Distance moved: [0,50]
Recovery progress: [0,50]

N(0.3, 0.25) 205.53 (45.64)

Materials:
Lander → Comm

100 2
Start: Lander
End: Comm

Distance moved: [0,50]
Recovery progress: [0,100]

N(2, 0.25) 34.06 (70.71)

Comm Setup 50 2 Comm
Progress: [0,1]
Recovery progress: [0,200]

N(0.05, 0.01) 49.54 (83.80)

times under the duration prediction condition, resulting in

100 and 1000 runs, respectively. In the oracle condition, the

planner was provided with complete foreknowledge of the

task durations, making execution extraneous. Instead, each

of the 20 schedules was stochastically optimized five times,

again yielding 100 data points.

1) Baseline: In the baseline case, no duration prediction

is performed. Instead, when a task finishes early, its duration

on the schedule is instantly changed from the expected to the

final value. When a task over-runs, its duration is increased

incrementally, until it completes.

2) Duration Prediction: The duration prediction condition

is identical to the baseline, except that the durations of

all currently executing tasks are updated at every timestep,

as discussed in Section IV-A. When tasks are predicted to

over-run or under-run, this provides opportunities for the

optimization algorithm to schedule additional tasks.

3) Oracle: In the oracle condition, the planner is provided

with the precise durations of each task, obviating any need

for prediction. The specific durations were generated by

simulating the task once for each task instance. As a result,

the actual task durations were stochastic across runs, but the

durations for each run were known by the planner at plan

time. Under this condition, the planner updated an initial

schedule (built using average task durations) with the actual

durations, repaired any resulting conflicts, then performed

5000 iterations of the same optimization routines as used

during execution in the other two experimental conditions.

This was done five times for each of the 20 initial schedules.

C. Data and Discussion

The results of our experiment are detailed in Table II,

where the data are reported as mean (standard deviation)

or difference (percent difference). The data is the difference

between the initial and final schedules – this removes the

variation due to differences in the initial schedules. “Exe-

cuted Tasks” includes zero-reward tasks, such as Move, while

“Rewarded Executed Tasks” includes only rewarding tasks

(see Table I). The reported planning time is the time needed

to perform all repairs and optimizations during the execution

or construction of a schedule.

When using duration prediction, the planner is able to

schedule 25.2% more tasks on average than the baseline

and achieve a 11.7% greater total reward (Table II, row

4). In addition to scheduling more rewarding tasks, some

unrewarding tasks were replaced with rewarding ones (the

increase in rewarded tasks is greater than the increase in

executed tasks).

Under the oracle condition, which represents the best that

the planner could accomplish with the provided heuristics,

6.6% more tasks were scheduled than the baseline, yielding

25.9% more reward (Table II, row 5). This shows that by

predicting task durations, the planner was able to achieve

45.0% of the possible improvement (Table II, row 6). Note

that under the oracle condition significantly fewer tasks were

scheduled, yet more reward was garnered: with the provided

foreknowledge, more of the long, high-reward tasks were

scheduled. In contrast, when using prediction, many smaller

low-reward tasks were added as small opportunities pre-

sented themselves. The specific results will vary according

to the composition of the scenario, but the gains due to

prediction are a function of how early over- and under-runs

can be predicted, the duration of tasks available for addition,

and the reward per unit time of the available tasks.

While the average increases are promising, the data is quite

noisy, as we can see from the large standard deviations.

This is due to the stochastic nature of both execution and

ASPEN’s heuristic approach to repair and optimization. In

particular, note the large standard deviations in expected

duration for tasks such as Comm Setup and Materials:

Lander → Comm (Table I). We performed a repeated mea-

sures ANOVA with the initial schedule as the repeated sam-

ple to compare the baseline, duration prediction, and oracle

results. There were statistically significant differences be-

tween all combinations (at a confidence level of p = 0.0001),

except for rewarded tasks between the baseline and oracle

cases. As can be seen from Table II, the number of rewarded

executed tasks was very similar between these conditions,

although which tasks were executed varied significantly, as

can be seen by the difference in reward.

These improvements come at a cost, however: overall

planning time increases by 37.2% on average when using

TABLE II

EXPERIMENTAL RESULTS.

Reward a Executed Tasks a Rewarded Executed

Tasks a Planning Time Runs

1. Baseline 2041.73 (475.53) 122.96 (28.26) 118.18 (31.24) 20.14s (7.79s) 100

2. Oracle 2571.10 (419.59) 131.10 (114.32) 114.32 (19.71) 66.16s (11.18s) 100

3. Duration Prediction b 2280.17 (433.25) 153.89 (27.73) 161.80 (32.22) 27.63s (17.57s) 1000

4. PB = Prediction - Baseline 238.44 (+11.7%) 30.93 (+25.2%) 43.62 (+36.9%) 7.49 (+37.2%) —

5. OB = Oracle - Baseline 529.37 (+25.9%) 8.14 (+6.6%) -3.86 (-3.3%) 46.02s (+228.5%) —

6. OB - PB (PB
OB

) 290.93 (45.0%) -22.79 (380.0%) -47.48 (—) 38.53s (16.3%) —

a Values are relative to the initial schedules. b Using 32 training runs per task.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Move: Distribution Accuracy vs.

 Training Set Size

Number of Observations

K
L

 D
iv

e
rg

e
n

c
e

 o
f

P
D

F

Predictions

Least−squares exponential fit

Fig. 6. As the number of observations used to form the duration distribution
increases, the resulting distribution becomes more accurate. The Y axis
indicates the K-L divergence from a distribution built from all available
data at the relevant query point.

prediction (Table II, row 4). This is due to an increased

number of repair and optimization attempts made possible

by the predictions, as well as the cost of prediction itself.

In order to evaluate only the effects of duration prediction,

execution was suspended during planning and optimization.

When operating in the real world, the number of optimization

passes and what portion of the schedule is optimized can be

adjusted to allow continuous execution. ASPEN includes the

concept of a “commitment window”, which is a window of

time, starting with the current time, in which the planner will

not change the schedule. This gives ASPEN a known “lead

time” in which repair and optimization calculations can be

performed without affecting execution.

D. Duration Prediction Characterization

In addition to evaluating the utility of duration prediction,

we characterized its accuracy as a function of the amount

of available training data. To do so, we built a corpus of

data for each of the eight tasks, consisting of 512 runs from

the initial state. This yielded between 11,021 and 177,795

observations per task, depending on the task’s inherent length

and stochasticity. We then created 17 sample sets for each

task, each with an ever larger portion of the corpus, beginning

with 2 runs and proceeding to 512 runs in increments of 32.

We built a test duration distribution from each sample

set at every point in a finely-spaced grid spanning the state

space of each task, and compared them with the correspond-

ing distribution constructed from the 512-run reference set.

Points with no supporting data were discarded. This com-

parison was made by computing the Kullback-Leibler (K-L)

divergence [18] between the test and reference distributions.

0 50 100 150
−1000

0

1000

2000

3000

4000

Number of Runs in Training Set

D
e
lt

a
 R

e
w

a
rd

Delta Reward vs. Training Set Size

(a)

0 50 100 150
0

50

100

150

200

250

300

Number of Runs in Training Set

P
la

n
n

in
g

 T
im

e

Planning Time vs. Training Set Size

(b)

Fig. 7. Reward achieved and planning time needed as functions of the
number of runs in the training set for each task. Each point corresponds
to an execution of a schedule, with the mean of each size of training set
plotted as a square. In 7(a), the average delta reward for the baseline case
is denoted with a dashed line, while the oracle condition is plotted as a
dashed-dotted line.

The divergence value increases as the distributions being

compared are more different, and identical distributions have

a divergence of zero.

Because a run does not provide data spread evenly across

the state space, Fig. 6 plots the number of kernels (obser-

vations) used to construct a prediction against the resulting

K-L divergence for all test points from all sample sets for the

Move task. In general, test points from larger sample sets will

have more observations, but the relationship depends heavily

on the task’s structure: a task may spend most of its time in

one portion of the state space, yielding few observations in

the outlying state space, even with large training sets. The

fitted curve is the least-squares fit of y = a∗exp(b∗x) to the

available data. The exponential distribution also fits the data

from the other seven tasks, although a and b will of course

vary. As can be seen from Fig. 6, little utility is gained from

having more than 5 data points in the vicinity of the query

point. Ideally, 5 observations would be within the query

kernel bandwidth of every point in the state space. Given

a kernel bandwidth and knowledge of the task’s structure,

this can provide guidance as to how many training runs are

useful for a particular scenario.

We then repeated the duration prediction portion of our

initial experiment while varying the amount of available

training data, from 2 to 128 runs per task. A run consists

of the data points generated by a single simulated execution

of the task. As can be seen in Fig. 7(a), reward increases

as the amount of training data increases, asymptoting at

roughly 32 runs of training data per task, although there is

significant variation as the training set continues to expand.

The first experiment (Table II) utilized data sets equivalent

to the 32-run sample set. The prediction condition improves

significantly over the baseline as long as more than 4 training

runs are available: the difference between the baseline and

every prediction experiment (except for the 4-run case)

is statistically significant at a confidence level of 0.0001,

according to a repeated measures ANOVA.

Fig. 7(b) shows that planning time increases very slightly,

if at all, with the amount of training data. While we use k-d

trees to quickly perform queries, prediction time will always

increase as the size of the training corpus increases. This is

offset by a reduction in the amount of repair needed, due to

the more accurate predictions.

V. FUTURE WORK

Duration prediction, while useful in its own right, is also a

tool that can enable much greater improvements in planning

and execution. In particular, we have previously proposed

live task modification [19], in which the composition of

teams currently executing tasks may be adjusted in response

to the realities of execution. For instance, if two tasks are

being performed in parallel, but we predict that one will

finish much later than the other, agents should be reassigned

to balance the tasks and reduce the overall makespan of the

schedule. Live task modification requires duration distribu-

tions, rather than simple scalar estimates, to reason about

factors such as the likelihood of a transfer being useful.

VI. CONCLUSION

This paper has examined the utility of duration prediction,

especially with respect to its use as part of a proactive re-

planning system. We have discussed the capabilities enabled

by predicting distributions, rather than scalars, and presented

our approach to doing so from relatively sparse training data

in a continuous state space. We experimentally evaluated

an implementation, and found it achieved a statistically

significant 45.0% of the maximum possible improvement,

when compared with an omniscient planner. In addition, we

established a relationship between the amount of training

data and both prediction accuracy and proactive replanning

performance. While duration prediction is an improvement in

its own right, it is also a stepping stone towards more flexible

and effective proactive replanning systems that can predict

problems during execution and fluidly reallocate agents in

response.

REFERENCES

[1] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt,
D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett, G. Stebbins,
and D. Tran, “Aspen – automated planning and scheduling for space
mission operations,” in Space Ops, Toulouse, June 2000.

[2] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Prentice Hall, 1993, ch. 7.
[3] F. L. Bookstein, “Principal warps: Thin plate splines and the decom-

position of deformations,” IEEE Transations on Pattern Analysis and

Machine Intelligence, vol. 11, pp. 567–585, 1989.
[4] J. H. Friedman, “Multivariate adaptive regression splines (with discus-

sion),” Annals of Statistics, vol. 19, pp. 1–141, 1991.
[5] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-

sion,” in Proceedings of the Seventeenth International Conference on

Machine Learning (ICML 2000), vol. 1, 2000, pp. 288–293.
[6] B. W. Silverman, Density estimation for statistics and data analysis.

London, UK: Chapman and Hall, 1986.
[7] J. Frank and A. Jónsson, “Constraint-based attribute and interval

planning,” Journal of Constraints, Special Issue on Constraints and

Planning, vol. 8, no. 4, October 2003.
[8] P. Laborie and M. Ghallab, “Planning with sharable resource con-

straints,” in Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), 1995.
[9] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack,

“Experiences with an architecture for intelligent, reactive agents,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
no. 2-3, pp. 237–256, 1997.

[10] E. Gat, “Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for controlling real-world mobile robots,” in
Proceedings of the National Conference on Artificial Intelligence

(AAAI), 1992.
[11] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An

architecture for autonomy,” International Journal of Robotics Re-

search, Special Issue on Integrated Architectures for Robot Control

and Programming, vol. 17, no. 4, 1998.
[12] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and

W. S. Kim, “Claraty: An architecture for reusable robotic software,”
in Proceedings of the SPIE Aerosense Conference, Orlando, Florida,
April 2003.

[13] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau,
“Using iterative repair to improve the responsiveness of planning and
scheduling,” in Proceedings of the International Conference on AI

Planning Systems (AIPS), 2000.
[14] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and

S. Chien, “Decision-making in a robotic architecture for autonomy,” in
Proceedings of the International Symposium on Artificial Intelligence,

Robotics, and Automation in Space, 2001.
[15] R. Simmons and D. Apfelbaum, “A task description language for robot

control,” in Proceedings of the Conference on Intelligent Robots and

Systems (IROS), Victoria, Canada, 1998.
[16] N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt,

“Idea: Planning at the core of autonomous reactive agents,”
in Proceedings of the 3rd International NASA Workshop

Planning and Scheduling for Space, 2002. [Online]. Available:
http://citeseer.ist.psu.edu/593897.html

[17] W. A. Woods, “Transition network grammars for natual language
analysis,” CACM 13, vol. 10, pp. 591–606, October 1970.

[18] S. Kullback and R. A. Leibler, “On information and sufficiency,”
Annals of Mathematical Statistics, vol. 22, pp. 79–86, 1951.

[19] B. Sellner and R. Simmons, “Towards proactive replanning for multi-
robot teams,” in Proceedings of the 5th International Workshop on

Planning and Scheduling in Space 2006, Baltimore, MD, October
2006.

