
Proactive Replanning for Multi-Robot Teams

Brennan Sellner
CMU-RI-TR-09-01

Submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

January 2009

Thesis Committee:
Reid Simmons, Chair

Sanjiv Singh
Stephen Smith

Tara Estlin (Jet Propulsion Laboratory, California Institute of Technology)

c© 2009 by Brennan Sellner. All rights reserved.

ABSTRACT

Humans are adept at cooperating and coordinating with one another in dynamic,
uncertain environments while adapting to unexpected events and delays. Human
workers are able to predict the likely outcome of their current tasks, communicate
with one another to schedule and reschedule cooperative tasks, and fluidly join and
leave teams as the situation warrants.

This thesis investigates how to bring the fluidity, responsiveness, and reliability
of human teams to a centrally coordinated, multi-robot team operating in domains
requiring tight inter-robot coordination and either the maximization of overall re-
ward or the minimization of makespan. Proactive replanning endeavors to create
flexible teams, then exploit their adaptability by dynamically adjusting the teams’
composition in response to predicted problems and opportunities. We have ex-
plored three components of proactive replanning: live duration prediction, mutable
teams, and live task modification.

We present algorithms to predict a distribution across the remaining duration
of a task, given a measurement of the task’s current state and a relatively sparse set
of training data. By predicting the duration of tasks throughout their execution, we
are able to execute schedules that achieve 45% of the improvement possible with
an omniscient planner.

Mutable teams are those that agents may join or leave throughout the coop-
erative task’s execution. Mutable teams leverage the possibilities presented by
optional roles: roles in a team that produce salutary effects, but are not strictly
required for the task to proceed. By dramatically increasing the options available
to the planner, the use of mutable teams allows the creation of significantly shorter
schedules with 57% fewer planning iterations.

Live task modification is the adjustment of tasks already underway by the plan-
ner, requiring close coordination between planner and executive. It is informed by
duration prediction and uses mutable teams to adjust executing tasks in response to
predicted problems and opportunities.

We evaluate the effects of the three components of proactive replanning in iso-
lation and in concert within a complex, stochastic, multi-agent simulated domain.
We find that proactive replanning significantly reduces the makespan of executed
schedules and increases the flexibility of the planner, bringing multi-robot systems
one step closer to the fluid teamwork so effortlessly accomplished by humans.

ii

ACKNOWLEDGMENTS

Thanks to my advisor, Reid Simmons, for more gallons of red ink and hours of
critical discussion than I care to think about. I’m not dead, so I must be stronger!
Thanks to Sanjiv Singh for years of discussions and project meetings. Thanks to
Steve Smith for his useful advice, and to Tara Estlin for her support, as well as her
willingness to answer questions about all things CASPER.

Thanks to the DiRA/SSP/Trestle/IDSR crew for years of interesting, frustrat-
ing, and rewarding multi-robot adventures: Greg Armstrong, Jon Brookshire, Brad
Hamner, Fred Heger, Dave Hershberger, Laura Hiatt, Seth Koterba, Nik Melchior,
Josue Ramos, and Trey Smith. Syndicate makes sense, trust me!

Thanks to the entire ASPEN/CASPER development team, without whom I
would have had to reinvent the wheel, axle, and internal combustion engine. Spe-
cial thanks to Steve Schaffer and Caroline Chouinard for answering 1,001 ques-
tions about the nuts and bolts of ASPEN and CASPER.

Thanks to Aaron Steinfeld, without whom JMP would just be another aerobics
exercise and my statistical analysis would be half-baked.

Thanks to Jeff Schneider for fruitful discussions about function approximation
and duration prediction.

Thanks to Suzanne Lyons Muth, Jean Harpley, Kristen Schrauder, and Karen
Widmaier for better administrative support than anyone could imagine.

Thanks to many friends and colleagues for their support over the years, espe-
cially Frank Broz, Justin Carlson, Rachel Gockley, Dani Goldberg, Jonathan Hurst,
Mary Koes, Jeremy Kubica, Brad Lisien, Maxim Makatchev, Matt Mason, Marek
Michalowski, Anne Mundell, Illah Nourbakhsh, Mayan Roth, Nick Roy, Paul Ryb-
ski, Alan Schultz, Sebastian Thrun, Chris Urmson, and Chuck Whittaker.

Finally, thanks to my family for their enduring support (and a mountain of
editing), and to Maria and Remi for putting up with me.

iii

DEDICATION

For my brother, Andrew.

iv

Contents

Contents viii

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Document Outline . 3
1.3 Live Duration Prediction (Chapter 5) 4
1.4 Mutable Teams (Chapter 6) . 5
1.5 Live Task Modification (Chapter 7) 6
1.6 Proactive Replanning (Chapter 8) 7
1.7 Summary . 8

2 Related Work 9
2.1 Planning, Scheduling, and Execution Systems 9

2.1.1 Planners / Schedulers . 9
2.1.2 Architectures: Integrating Planning and Execution 12

2.2 Duration Prediction . 14
2.3 Mutable Teams and Live Task Modification 16

2.3.1 Multi-robot task allocation 16
2.3.2 Swarms . 16
2.3.3 Role Exchange . 17

2.4 Summary . 17

3 Background 19
3.1 ASPEN Planner . 19

3.1.1 ASPEN Core . 20
3.1.2 Approach to Planning, Repair, and Optimization 23
3.1.3 Extensions to ASPEN 28

3.2 CASPER Execution System . 38
3.3 Kernel Density Estimation . 41

v

CONTENTS

3.4 Summary . 42

4 Approach 43
4.1 Proactive Replanning . 43

4.1.1 Live Duration Prediction 43
4.1.2 Mutable Teams: Required and Optional Roles 44
4.1.3 Live Task Modification 46

4.2 Requirements for Proactive Replanning 47
4.2.1 Planner . 47
4.2.2 Executive . 47

4.3 Domain Complexity . 48
4.4 Summary . 50

5 Live Duration Prediction 51
5.1 Overview . 51
5.2 Applicability . 52

5.2.1 Under-runs . 52
5.2.2 Over-runs . 53

5.3 Use of Distributions . 54
5.4 Prediction Method . 57

5.4.1 Kernel Density Estimation 57
5.4.2 Weighted Kernel Density Estimation 58
5.4.3 Application to Duration Prediction 58
5.4.4 Other Approaches . 59

5.5 Planner Integration . 65
5.6 Predicting Resource Usage . 65
5.7 Experimental Results . 67

5.7.1 Accuracy of Prediction 67
5.7.2 Effects of Live Duration Prediction: Maximizing Reward . 69

5.8 Summary . 75

6 Mutable Teams 77
6.1 Overview . 77
6.2 Applicability . 79
6.3 Mutable Teams and the Planner 82

6.3.1 Required Planner Capabilities 82
6.3.2 Representing Mutable Teams and Roles in ASPEN 83
6.3.3 Alternative Representations 88

6.4 Mutable Teams and the Executive 94
6.4.1 Required Executive Capabilities 94

vi

CONTENTS

6.4.2 Designing Tasks to Utilize Optional Roles 95
6.4.3 Designing Tasks to Utilize Mutable Teams 96

6.5 Duration Prediction with Mutable Teams 98
6.5.1 Predicting the Effects of Team Changes 98
6.5.2 Reasoning About Engagement and Disengagement Costs . 105

6.6 Experimental Results . 109
6.6.1 Duration Prediction with Mutable Teams 110
6.6.2 Effect of Mutable Teams on Initial Plans 112

6.7 Summary . 122

7 Live Task Modification 125
7.1 Overview . 125
7.2 Applicability . 126

7.2.1 Load Balancing . 126
7.2.2 Arrival Time Adjustment 128
7.2.3 Summary . 129

7.3 Task Modification and the Planner 129
7.3.1 Required Planner Capabilities 130
7.3.2 Representation . 131

7.4 Task Modification and the Executive 133
7.4.1 Required Executive Capabilities 133
7.4.2 Implementation . 135

7.5 Summary . 136

8 Proactive Replanning 137
8.1 Architecture . 138

8.1.1 Planner: ASPEN . 140
8.1.2 Executive . 140
8.1.3 Simulator: TaskSim and ROBINSON 141
8.1.4 Flow of Execution . 145

8.2 Heuristics . 146
8.2.1 Stochasticity . 147
8.2.2 Predicates . 148
8.2.3 Simplifying Assumptions 148
8.2.4 Minimize Impact . 148
8.2.5 Post-Processing . 150

8.3 Transferring Agents . 151
8.4 Experimental Results . 162

8.4.1 Scenario . 162
8.4.2 Experimental Design . 163

vii

CONTENTS

8.4.3 Analysis Procedure and Definitions 167
8.4.4 Data and Analysis . 169

8.5 Domain Exploration . 188
8.5.1 Effect of Agent Scarcity 188
8.5.2 Effect of Number of Prediction Particles 190
8.5.3 Effect of Failure Length 191

8.6 Conclusions . 193

9 Conclusions 195
9.1 Future Work . 196

9.1.1 Evaluation on Real-World Hardware in Real Time 196
9.1.2 Reducing Repredictions 198
9.1.3 Heterogeneous Agents 199
9.1.4 Mutable Teams with Durative Integration and Disengage-

ment . 199
9.1.5 Mutable Teams and Semi-Terminal Failures 200
9.1.6 Applicability to Least-Commitment Planners 200
9.1.7 Predicting Resource Usage 201
9.1.8 Human Interaction and Sliding Autonomy 201

9.2 Summary . 201

Bibliography 210

Appendices 213

A Algorithms for Duration Prediction with Mutable Teams 213

B TaskSim Model Definitions 217
B.1 Outpost Scenario . 217
B.2 CommTower Scenario . 224

viii

List of Figures

3.1 Examples of the transfer (a and b) and swap (c - e) methods. The
anchor symbol on task C indicates that it is externally constrained
to occur at a specific time. 30

3.2 A task’s slack is the minimum of the slacks associated with all of
its predecessor constraints. For purposes of illustration, assume T1

has a single required role. Here, T4 has an implicit agent resource
constraint to T3 (with slack S1) and a role constraint to T2 (with
slack S2), resulting in zero slack for T4. 31

3.3 In (a), an unpacked schedule is depicted, with constraints between
tasks labeled with the associated slack. (b) presents the schedule
that results after packing, with tasks in contact having a slack of zero. 33

3.4 T5 is “trapped” by the agent resource constraints of T3 and T4 and
their constraints relative to their associated cooperative task, T1.
In order to pack a schedule containing this type of fragment, the
planner must find constraint loops that begin and end with join
tasks of the same cooperative task, then move all tasks in the loop,
as well as the cooperative task, as a unit. 33

3.5 The planner’s model of agent position in our domain, and the al-
lowed transitions. An agent becomes stranded when it leaves a
moving task before it reaches its destination. This is an indication
to the planner that it must add a move task to reposition the agent
prior to its next task. 34

3.6 The CASPER architecture. The Planner, Schedule Database, and
Timeline Manager components comprise the ASPEN proper. Adapted
from Chien et al. (1999), where the Executive is termed a Real Time
System. 39

ix

LIST OF FIGURES

3.7 A simple example of kernel density estimation. Kernels (dashed
lines) are centered at each of the five observations (plotted as ‘o’s),
then the kernels are summed to build the estimated distribution
(solid line). 42

4.1 The filling of at least one optional role in the Lay Cable task nearly
eliminates the effects of failures, which significantly increase the
task’s duration when only one agent is available. Each row of im-
ages corresponds to a different number of agents, the left column
depicts the estimated duration distribution at the start of the task,
and the right column plots the duration distributions if a failure oc-
curs immediately following the start of execution. See Appendix
B.2 (Listing B.14) for structural details of the task. 49

5.1 Duration prediction allows the planner to start setup tasks early
when a preceding task is predicted to under-run. 53

5.2 Predicting the remaining duration of executing tasks allows the
planner to make use of opportunities presented by task over-runs. . 54

5.3 Reducing the available time for two tasks by T has different effects
on the likelihood that each will finish within the reduced interval.
This can be leveraged when simultaneously optimizing schedule
makespan and the likelihood of tasks over-running their allotted
time. 55

5.4 An illustration of the advantages of modeling multi-modal dura-
tions. (a) is the current team’s duration distribution. The team has
two unfilled optional roles: one reduces the effect of failures (b),
and the other increases the rate of progress when operating nor-
mally (c). Note that the means of (b) and (c) are identical, but
only (c) provides a non-zero probability of meeting the deadline.
This distinction cannot be made using only the overall mean or a
unimodal model of duration. 56

5.5 A simple example of kernel density estimation. Kernels (dashed
lines) are centered at each of the five duration observations (plot-
ted as ‘o’s), then the kernels are summed to build the estimated
distribution (solid line). This figure is the same as Fig. 3.7. 57

5.6 The query point (the current value of this dimension’s state vari-
able) is denoted with a ‘+’, candidate observations with ‘o’s, and
the query kernel as the solid curve. The weight of an observation
i for this dimension, wi,j , is the likelihood that the observation
would be drawn randomly from the query kernel. 59

x

LIST OF FIGURES

5.7 The duration surface of the Place Panel task. Place Panel has one
required role with bounds [1, 1] and one optional observer role,
with bounds [0, 2], and two continuous state variables. 62

5.8 The Transport task’s fragment of the Parameter Constraint Net-
work (PCN). State variables are updated by the executive, and trig-
ger propagations through the PCN, which result in the recalculation
of duration predictions. When duration is updated, the task’s dura-
tion on the schedule is changed. Here, the current time (curTime)
is used to calculate elapsed time, which is added to the predicted
remaining duration. The task state variables distanceRemaining,
numTransporters, and glitchRecovery are updated by the execu-
tive: when they change, a new duration prediction is triggered via
pred dur. 66

5.9 The stochastic simulation model for the Move task. This is used to
simulate execution, and provides the state that is used for duration
prediction during execution. In addition, the state traces generated
are used offline to train the KDE-based predictor. Note that we
assume a similar distribution of terrain during all moves, as the
likelihood of becoming stuck during a given timestep is constant.
The only modelled difference between moving from location A to
B and A to C is the duration of the move, and hence the expected
number of recoveries that must be performed. 68

5.10 As the number of observations used to form the duration distribu-
tion increases, the resulting distribution becomes more accurate.
The Y axis indicates the K-L divergence from a distribution built
from all available data at the relevant query point. 69

5.11 The Lunar Outpost scenario. Numbers in parentheses denote the
number of agents needed to perform each task. Tasks during which
the agent must remain at a site are denoted with a dashed circle. . 70

5.12 Reward achieved and planning time needed as functions of the
number of runs in the training set for each task. Each point cor-
responds to an execution of a schedule, with the mean of each size
of training set plotted as a square. In 5.12(a), the average delta re-
ward for the baseline case is denoted with a dashed line, while the
oracle condition is plotted as a dashed-dotted line. 75

6.1 Mutable teams allow agents to join critical-path tasks once they
finish their prior tasks. While the use of optional roles alone allows
mild optimizations (b), mutable teams are needed to make full use
of the opportunities afforded by optional roles (c). 80

xi

LIST OF FIGURES

6.2 The use of mutable teams allows the planner to remove agents from
a task early in order to reduce the schedule’s overall makespan. . . 81

6.3 Mutable teams allow the planner to make use of otherwise idle
portions of an agent’s schedule. For illustrative purposes, assume
tasks B and C are constrained to occur at their scheduled times. . . 81

6.4 Mutable teams are encoded in ASPEN as a combination of coop-
erative and join tasks, as well as metric resource timelines serving
as records of agent requests. 84

6.5 An example of scheduling a task with required and optional roles.
Note that at the end of step (c), the schedule is valid (e.g. all re-
quired timelines (TLT,r1) are balanced). Step (d) fills an optional
role partway through the task, resulting in a shorter task duration. . 87

6.6 An alternative encoding for teams with optional roles is to hierar-
chically decompose the cooperative task into the set of filled roles,
then the assignment of agents to the roles. 91

6.7 Instead of first decomposing the cooperative task into role sets, an
alternative is to decompose it into a set of role slot tasks, each of
which is then decomposed into a task assigning a specific agent (or
no agent) to the slot. 91

6.8 Representing mutable teams with a hierarchical decomposition ap-
proach requires the planner to break the decomposition link to the
role set before re-decomposing the cooperative task into the new
role set. 92

6.9 Optional roles may be partially represented in C-TAEMS through
appropriate quality accumulation functions, the use of leaf tasks
representing the commitment of an agent to a specific role slot,
and empty tasks representing an open optional role slot. 94

6.10 The transfer function between a gamma and a normal distribution
is computed by calculating the ratios between the PDFs’ probabil-
ity and duration values at points where the CDF values are equal. . 101

6.11 In this example of particle projection prediction, the task starts with
1 agent and 9.5 distance units from the goal. An additional agent
will arrive in 2 time units. This diagram flattens the agents dimen-
sion of the state space, depicting data and query kernels for one
agent as dashed lines and two-agent elements with dotted lines. . . 102

6.12 A prototypical agent transfer from a donor task to a recipient task.
Example duration distributions are indicated by the dotted lines.
Shaded areas indicate the portion of each task that is affected by
the disengagement and integration tasks. 106

xii

LIST OF FIGURES

6.13 Applying the drag of a disengage task to the duration distribution
of the donor stretches the distribution by the drag factor at each
timestep during which the disengage task is active. 108

6.14 The accuracy of particle projection, as compared with the com-
plete projection, for the simple Lift task. All curves asymptote to
zero divergence once 1000 particles are used, validating our use of
1000 particles as ground truth when experimenting with the more
complex Transport task. Note that the X scale is logarithmic. . . . 111

6.15 As the number of changes to a team (e.g. number of arrivals and
departures) increases, the divergence of distribution transfer func-
tions from the true underlying distribution increases rapidly, while
the accuracy of particle projection prediction is unaffected, with
the base accuracy determined by the number of particles. Note that
the projection points are offset along the X axis for clarity, and the
20- and 40- particle data are not plotted. 112

6.16 The computational cost of both particle projection prediction and
distribution transfer functions increases with the number of changes,
although the rate of increase for particle projection is much greater,
and is determined by the number of particles. 113

6.17 The accuracy of particle projection is determined by the number
of particles used. This plot averages the K-L divergence across all
team changes for each number of particles, using the same data set
as Figs. 6.15 and 6.16. 114

6.18 The CommTower scenario. The repeat count for each task precedes
it, while the agent bounds for each role follow. The metric for this
scenario is the makespan of the schedule. 116

6.19 The use of mutable teams (left) results in schedules that are shorter
than otherwise possible (right) by a statistically significant degree.
Individual schedules are plotted as points behind the mean and er-
ror bars (at one standard deviation), and are randomly dispersed
along the X axis for clarity. 118

6.20 Average makespan achieved for plans involving mutable and im-
mutable teams, as a function of the number of optimization iterations.119

xiii

LIST OF FIGURES

6.21 Mutable teams consistently allow the planner to repair the schedule
with fewer iterations (a, c), with no computational cost (b, d, e). (a)
plots the number of iterations of repair needed to construct an ini-
tial, unoptimized schedule, while (b) graphs the time needed to do
so. (c) charts the number of iterations of repair needed to construct
the initial schedule and repair all conflicts introduced by the opti-
mization process, while (d) depicts the time taken. (e) graphs the
total time taken to construct and optimize the schedule, while (f)
plots the time required by optimization, not including any resulting
repairs. 121

6.22 The optimization procedure (Algorithm 3.4) backtracks to the best
schedule observed to date if no significant progress is made af-
ter a given number of optimization iterations. A planner utilizing
mutable teams does so significantly fewer times, indicating that
optimizations are on average more useful. 122

7.1 When used in concert with mutable teams, live task modification
allows the more efficient execution of a schedule (d) than otherwise
possible (c). If live duration prediction is also supported, further
efficiencies are possible (e). 127

7.2 Live task modification is necessary to resolve the conflict that oc-
curs when a task over-runs, making its agent unable to meet its
scheduled arrival time for a cooperative task. 128

8.1 The structure and information flow of the CASPER planning and
execution system, as extended to support proactive replanning. Our
extensions are indicated in italics or dashed lines and boxes. . . . 139

8.2 A graphical representation of the TaskSim model for Supply Habi-
tat. The values of moveStep and boxStep are dependent on
the number of agents assigned to the team. normal(µ, σ) returns
a sample from a normal (Gaussian) distribution with mean µ and
standard deviation σ. uniform(a, b) returns a random value uni-
formly distributed across the range [a, b]. 142

8.3 Two simplifying operations that may be carried out upon cooper-
ative tasks. In (a) and (b), a join is extended to subsume another,
while in (c) and (d) roles are rearranged to reduce the total number
of join tasks. 151

xiv

LIST OF FIGURES

8.4 Transferring agent 2 from its optional role in T2 to an optional
role in T1 reduces the schedule’s makespan. Doing so requires
shortening the donor join task T4, inserting a setup task T8, and
inserting the new join task T7. 158

8.5 The CommTower scenario. The repeat count for each task precedes
it, while the agent bounds for each role follow. The evaluation
and optimization metric for this scenario is the makespan of the
schedule. This duplicates Fig. 6.18. 163

8.6 The means and standard errors of the final schedule’s makespan for
each of the six experimental conditions. See Table 8.4 for ANOVA
analysis. 170

8.7 The means and standard errors of the missed opportunity metric for
each of the six experimental conditions. See Table 8.5 for ANOVA
analysis. 172

8.8 The means and standard errors of the number of repair iterations
performed during the construction, optimization, and execution of
each schedule for each of the six experimental conditions. See
Table 8.6 for ANOVA analysis. 173

8.9 The means and standard errors of the number of repair iterations
required in the four contexts of repair. See Table 8.6 for ANOVA
analysis. 174

8.10 The means and standard errors of the time spent on different opera-
tions. For timing analysis, we use the subset of 452 runs performed
on a cluster of 9 identical computers. Measurements are in seconds
of user time, as reported by rusage(). See Table 8.7 for ANOVA
analysis. 178

8.11 More expensive packing optimizations occur with LDP active, re-
sulting in a more time-consuming optimization process. See Table
8.7 for ANOVA analysis. 179

8.12 The means and standard errors of the time spent on the three pri-
mary phases of a run, as well as the average time needed to execute
a single step of the schedule. Measurements are in seconds of user
time, as reported by rusage(). See Table 8.8 for ANOVA analysis.183

8.13 The means and standard errors of the number of predictions per-
formed during repair and optimization, and the time required, sec-
tioned into those that occur prior to and during execution. See
Table 8.9 for ANOVA analysis. 185

8.14 The effects of proactive replanning are magnified as more agents
become available. 189

xv

LIST OF FIGURES

8.15 Increasing the number of particles used to construct duration pre-
dictions increases the planning time required, with no significant
effect on the makespan. Error bars are the standard deviations of
each sub-experiment. The solid horizontal line is the average when
transfer functions are used, while the dashed horizontal lines rep-
resent the standard deviation of the transfer function sub-experiment.191

8.16 The effects of proactive replanning are magnified as the impact of
non-terminal failures increases. 192

xvi

List of Tables

3.1 A summary of ASPEN’s repair methods. 26
3.2 A summary of ASPEN’s choice points, which are decision points

within the repair and optimization methods at which user-specified
heuristics are applied. A heuristic may be applicable to one or more
of these choice points. 27

3.3 A summary of ASPEN’s optimization methods. 29
3.4 A summary of the callback points we have added to ASPEN. User

callback functions may be invoked at any point, in the same manner
as heuristics are invoked at choice points. 35

5.1 A comparison of the ability of various fitting algorithms to produce
a scalar duration prediction for the Place Panel task, given a num-
ber of training traces varying from 10 to the full dataset of 1000
(approximately 17,500 data points). 64

5.2 Lunar Outpost scenario tasks and relevant statistics. 71
5.3 Live duration prediction experimental results. 73

6.1 Tasks may be augmented with a wide variety of optional roles, with
an equally wide range of effects. A few examples are detailed here.
Effects noted in each example indicate the likelihood of improve-
ment in the relevant category. Integration drag is the degree by
which the team is slowed while the new agent joins the team, and
is on a scale of 1 (no effect) to 5 (progress halts while the agent
joins). 97

6.2 CommTower scenario tasks and relevant statistics. Count denotes
the number of times each task must be performed, while Duration
from Start is the average duration for the task, given the minimal
set of agents. 115

xvii

LIST OF TABLES

8.1 A selection of the predicates utilized in the heuristic suite, and a
summary of what they examine. 149

8.2 Summaries of the heuristic suite used during schedule repair and
optimization. 152

8.3 The six experimental conditions evaluated in this experiment. . . . 167
8.4 ANOVA analysis results for the makespan of the executed schedule. 170
8.5 ANOVA analysis results for the missed opportunity measure. . . . 171
8.6 ANOVA analysis results for iterations of repair, as decomposed by

context. 175
8.7 ANOVA analysis results for time metrics, as decomposed by func-

tion. 179
8.8 ANOVA analysis results for time metrics, as decomposed by phase

of operation. 182
8.9 ANOVA analysis results for the various measures of the number of

predictions and time consumed. 186

xviii

List of Algorithms

3.1 ASPEN’s basic repair algorithm. 24
3.2 ASPEN’s Add repair method . 25
3.3 ASPEN’s basic optimization algorithm. 29
3.4 Our extended optimization algorithm. Differences from the basic

algorithm (Algorithm 3.3) are italicized. 37
3.5 The iterative deepening repair algorithm. 38
3.6 CASPER’s execution algorithm, per Chien et al. (1999). 39
8.1 The flow of execution in the proactive replanning-enhanced AS-

PEN/CASPER system, while performing simulation and planning
in the same thread. 146

8.2 A simplified form of the Transfer repair and optimization method.
The complete method also determines if an existing setup task may
be moved, rather than adding a new one, but this logic is omitted
for clarity. Heuristics are invoked on each line that begins with
“select”. 159

A.1 The transfer function between two distributions is a mapping of a
CDF value to a PDF and duration ratio, which may be applied to
distributions similar to the source distribution in order to transform
them into the same domain as the destination distribution. 214

A.2 Distribution transfer functions utilize the assumption that the form
of a particular team’s duration distribution will not change during
task execution to approximate the expected duration distribution,
given future arrivals and departures of agents. 215

A.3 Particle projection prediction projects a set of particles through
the training database to estimate the duration distribution of a task
whose set of assigned agents is expected to change over time. . . . 216

xix

LIST OF ALGORITHMS

xx

Chapter 1

Introduction

Humans are remarkably adept at operating in, and adapting to, dynamic, uncer-
tain environments, setting an extremely high standard for robots operating in the
real world. One aspect of human adaptability is our ability to predict the out-
come of events and to adjust our plans quickly to accommodate any unexpected
changes. When working in teams, humans will provide their teammates with fre-
quent progress updates and estimates about whether they expect to finish their
assigned tasks on time. This information flow allows individuals to adjust their
schedules to make the best use of their time. For instance, the foreknowledge that
a group meeting will be delayed by an hour because the team leader is caught in
traffic allows everyone to take on appropriate tasks during the now-free window
and reschedule anything that may conflict with the delayed meeting.

Human teams also are extremely flexible: members are able to join or leave
teams at will, as their schedules or the tasks allow. A team task is divided as appro-
priate among the workers, according to their skills and availability. For example,
suppose a pair of construction workers are shingling a roof, when one drops his
hammer. If no one else is available, no additional shingles can be placed until one
of them descends to the ground, retrieves the hammer, and returns to the roof. If
instead there is a team nearby mixing cement, one of them may briefly leave the
team to throw the hammer back up to the roofing team, significantly shortening
the shingling task with minimal impact on the cement team. Human adaptability
allows us to replan our work processes, redistribute tasks as needed, and reap the
benefits of increased efficiency.

In this thesis, we are motivated by bringing these capabilities of prediction,
flexibility, and adaptability to a multi-robot team operating under the control of a
central scheduler. Our simulated experimental domains model two related scenar-
ios, in which a set of tasks must be performed to establish and maintain a lunar

1

1. Introduction

outpost. Some tasks require transitioning between discrete locations, while others
remain stationary. Some require only a single agent, others require multiple agents,
and most may make use of additional agents if they are available, in order to in-
crease the task’s speed or reliability. In one scenario, the objective is to maximize
reward within a fixed scheduling window, while the goal in the other scenario is to
minimize the length of a schedule containing a fixed set of tasks. These character-
istics result in scenarios similar to many human tasks, where agents may be added
or removed from tasks as conditions warrant.

Our approach, termed proactive replanning, increases the system’s efficiency,
flexibility, and reliability by predicting deviations from the schedule and providing
additional methods to adjust the schedule to deal with unexpected contingencies
and opportunities. Current planning and execution systems are limited in their
options when execution does not proceed as expected because they often lack the
ability to predict problems in the future, cannot schedule agents to participate in
only a portion of a task, and are unable to modify a task once it has begun execution.

In this thesis, we explore three aspects of proactive replanning: (live) duration
prediction, mutable teams, and live task modification. Duration prediction is the
prediction of a task’s duration, given its state and assigned team. Live duration
prediction consists of generating such predictions throughout execution. Mutable
teams are those that allow agents to join or depart a team in mid-task, and include
optional roles: roles that improve the performance of the team in some fashion,
and may be filled if sufficient agents are available, but are not essential to the
completion of the task. Live task modification is the act of the planner changing
an executing task in some fashion, which allows the planner to adjust the schedule
to directly compensate for events occurring during execution. In this thesis, we
specifically examine modification of the team profile, which consists of adjusting
which agents are assigned to the task, and for what spans of time. Taken as a whole,
these three components enable the proactive replanning system to foresee problems
and opportunities, then react in time to resolve or take advantage of them.

1.1 Thesis Statement

Thesis: A proactive replanner is able to construct and execute more efficient or
value-laden schedules by continuously predicting the duration of executing tasks,
leveraging the opportunities provided by mutable teams and optional roles, and
modifying the composition of teams as execution progresses.

We support this statement by presenting algorithms to predict the duration of
ongoing tasks; to model and reason about teams whose composition varies through-
out execution; and to reason about when to make changes to the team profiles. We

2

1.2. Document Outline

have validated our algorithms through a series of experiments in simulation. With
live duration prediction alone, the planner was able to execute schedules with 45%
of the additional reward possible if perfect information were available. In isolation,
mutable teams enable the generation of schedules 5.65% shorter than possible with
immutable teams. When the three aspects of proactive replanning are combined,
the complete system is able to generate, optimize, and execute schedules 11.5%
shorter than the baseline.

1.2 Document Outline

• Chapter 2 discusses related planning systems, planning and execution archi-
tectures, and other work on problems similar to duration prediction.

• Chapter 3 provides a background discussion of the ASPEN planner and
CASPER execution system that has been utilized, as well as how the AS-
PEN/CASPER core has been extended to support proactive replanning. An
introduction to Kernel Density Estimation also is provided, which is the
function approximation technique upon which our duration prediction al-
gorithms have been built.

• Chapter 4 presents an overview of our approach to proactive replanning, and
discusses the three components of proactive replanning and the requirements
that proactive replanning places upon the underlying systems.

• Chapter 5 details our approach to duration prediction, both prior to and
throughout execution. Duration prediction’s applicability is discussed, as
well as its integration into the planning and execution system. Duration pre-
diction is experimentally evaluated in isolation.

• Chapter 6 discusses the use of mutable teams and optional roles to increase
the flexibility of the planner at both plan- and execution-time. The require-
ments for mutable teams, as well as how best to represent and design for
them, are addressed, as is the extension of our duration prediction algorithms
to support mutable teams. The effect of mutable teams on the efficiency of
initial schedules is evaluated.

• Chapter 7 explains the use of live task modification to allow the planner to
react more effectively to events as execution proceeds. It also discusses the
demands placed upon the planner and executive by live task modification
in detail, as well as how we implement live task modification within the
ASPEN/CASPER framework.

3

1. Introduction

• Chapter 8 details how the different components of proactive replanning are
integrated into a complete system, building upon ASPEN and CASPER. Ex-
amples of our proactive replanning-specific heuristics are discussed, and our
complete heuristic suite is summarized. Extensive experiments are presented
that evaluate the different combinations of live duration prediction, mutable
teams, and live task modification.

• Chapter 9 presents our conclusions, future work, and summarizes the thesis.

The following sections summarize the main results of Chapters 5 - 8.

1.3 Live Duration Prediction (Chapter 5)

The ability to predict the expected duration of tasks both prior to, and throughout,
execution lies at the core of proactive replanning. By providing advance warning
of the effects of execution-time events, duration prediction allows the planner to
react while there is still time to address problems effectively. Duration prediction
is the prediction of a distribution across possible durations for a task, given the
task’s initial state and assigned set of agents. Live duration prediction is doing so
given the task’s current state as it executes. By updating its schedule as events oc-
cur during execution, the planner is better able to adapt the schedule to the realities
of execution. By predicting a distribution, rather than a scalar value, the planner
is able to engage in several new strategies (unattainable if we simply compute a
scalar duration), such as multi-metric optimization, reasoning about deadlines, the
efficient use of mutable teams, and prediction jitter compensation. In contrast,
existing planning and execution systems dispatch tasks from the planner to the ex-
ecutive, at which point control is passed entirely to the executive. Minimal updates
are provided to the planner during execution, often consisting simply of comple-
tion or failure notices when tasks have ceased executing. This paucity of data is
insufficient to support a proactive replanning approach.

We used a form of Kernel Density Estimation (Silverman, 1986) to develop an
approach to duration prediction that enables the estimation of duration distributions
given relatively sparse training data. Kernel Density Estimation is a non-parametric
method related to histograms that is used to estimate an arbitrary distribution from
training data without making a priori assumptions about the form of the underlying
distribution. This allows our approach to be used in scenarios where it is not fea-
sible to collect exhaustive training data, while being able to incorporate additional
data as it becomes available. We have evaluated the effect of duration prediction in
a simulated multi-agent lunar outpost construction scenario, where the objective is
to maximize reward within a fixed planning horizon. With sufficient training data,

4

1.4. Mutable Teams (Chapter 6)

the planner was able to achieve 45% of the improvement possible if it were omni-
scient. We also examined the effects of varying the amount of training data, and
found that live duration prediction produced significantly improved results with
even very sparse data (4 training runs).

1.4 Mutable Teams (Chapter 6)

Mutable teams are teams that agents may join, or leave, during the execution of a
task, allowing the planner to schedule agents to participate during only a portion
of the task’s execution. Such teams often include optional roles, which need not
be filled for the task to proceed, but provide tangible benefits if sufficient agents
are available, such as a higher rate of progress or reduced likelihood of failure.
These contrast with required roles, which must be filled throughout the task’s per-
formance for it to proceed, although a required role need not be filled in its entirety
by a single agent. We refer to the set of assigned agents, and their scheduled ar-
rival and departure times, as a team profile. To the best of our knowledge, existing
scheduling systems exclusively address immutable teams, with a fixed number of
agents assigned to a task throughout its execution.

The concept of optional roles alone grants the planner significant additional
flexibility during both the formation of the initial schedule and its execution. By
providing flexibility in the number of agents that may be assigned to a task, op-
tional roles allow the planner to trade resources against execution time as the sit-
uation warrants. Mutable teams enhance the utility of optional roles by allowing
agents to be added to a team mid-task as they become available. This allows the
planner to increase task efficiency, even if there are insufficient agents available to
fill the optional role(s) in their entirety. In addition, mutable teams and optional
roles provide the planner with the framework necessary to adjust the allocation of
agents as execution-time events warrant: if two teams are executing in parallel,
with one running ahead and the other behind, the planner may transfer agents to
the slower task, balancing the schedule and reducing the impact of the slow team
on the makespan. Performing such an operation requires both mutable teams and
live task modification.

Chapter 6 discusses the concepts of mutable teams and optional roles in de-
tail, the requirements placed upon the planner and executive in order to support
mutable teams, and several possible representations of mutable teams within the
planner. The design of tasks to support optional roles and mutable teams is ad-
dressed, as well as the extension of our duration prediction algorithms to estimate
task duration for mutable teams, given training data from immutable teams. Ex-
perimental results are presented, comparing the efficiency of schedules generated

5

1. Introduction

using mutable or immutable teams. The scenario explored here is a variant on the
lunar outpost construction theme, with many tasks, optional roles, and a goal of
minimizing the schedule’s makespan. The introduction of mutable teams yields
schedules shorter by a statistically significant amount (5.65%), with no overall
computational penalty. The additional options provided by mutable teams result in
57.5% fewer plan repairs, although each repair is more computationally expensive,
due to the complexity of predicting the duration of mutable teams.

1.5 Live Task Modification (Chapter 7)

Live task modification is the act of changing some aspect of an executing task,
generally in an attempt to take advantage of an opportunity or alleviate a problem
detected during execution. In this thesis, we address the adjustment of the team
profile of an executing task by the planner. This formulation of live task modi-
fication is predicated upon the presence of mutable teams, although the general
concept may be applied to any adjustable parameter of a task, such as its goal,
path, or speed. By modifying an executing team’s profile, the planner is able to
adjust the arrival and departure time of agents, add additional agents to the team,
or remove existing assignments. This expands the planner’s set of options when
resolving conflicts involving executing tasks or optimizing the near-future portion
of the schedule. For instance, if a team is running behind, additional agents may be
transferred into open optional roles to bring the team back on the original sched-
ule. Similarly, overachieving teams may donate agents to other teams or start future
tasks earlier.

In contrast, existing planning and execution systems do not allow the planner
to affect tasks once they have begun execution. While this provides a clean break
between the authority of the planner and executive, it relegates the planner to a
passive role in addressing the effects of execution-time events: it may adjust only
the remainder of the schedule, rather than actively attempting to solve the problem
at hand.

Chapter 7 discusses the applications of live task modification, the demands it
places upon the planner and executive, and our implementation of live task modifi-
cation within the ASPEN/CASPER framework. We do not independently evaluate
live task modification, due to the dependence of our formulation on mutable teams.
Instead, we examine its effects in the context of a complete proactive replanning
system. The results of these experiments are reported in Chapter 8.

6

1.6. Proactive Replanning (Chapter 8)

1.6 Proactive Replanning (Chapter 8)

In Chapter 8, we address how duration prediction, mutable teams, and live task
modification fit together within the ASPEN/CASPER framework to form a com-
plete proactive replanning system. We discuss their integration into ASPEN/-
CASPER, as well as how we extended the ASPEN/CASPER core to more fully
support proactive replanning.

ASPEN is a heuristic-based iterative repair planner/scheduler that makes use
of a set of repair and optimization methods. Each method consists of a fixed se-
ries of steps that may resolve a conflict or optimize some portion of the schedule.
For instance, repair methods include moving a task, deleting a task, or transferring
an agent between tasks. Each method, in turn, has a set of choice points, where
decisions are made such as upon which tasks to operate or where to place a task.
Domain-specific heuristics are applied at each of these choice points, allowing AS-
PEN’s repair and optimization behavior to be customized to the task at hand. In this
chapter, we revisit our additional repair and optimization methods, first introduced
in Chapter 3, and survey our suite of heuristics. We discuss in detail the Transfer
method, in which the planner decides whether, and how, to transfer agents between
tasks.

This chapter also presents the metric simulator (TaskSim) developed for this
thesis. TaskSim models tasks using an expanded form of Augmented Task Net-
works (Woods, 1970), allowing their execution to be stochastic and dependent upon
an evolving state. The integration of TaskSim with the CASPER execution system
is addressed, as well as how the simulator’s world model varies in a significant
manner from that of the planner.

Extensive experiments also are presented that evaluate the effects of utilizing
different combinations of live duration prediction, mutable teams, and live task
modification. In these experiments, we utilize the same lunar construction scenario
as was used to evaluate mutable teams: there are many multi-agent tasks with op-
tional roles, and an overall goal of minimizing the executed schedule’s makespan.
We find that mutable teams reduce the makespan by 5%, while adding live task
modification yields an additional 6.5%, but only if live duration prediction is also
enabled. With all three components active, the proactive replanning system is able
to construct, optimize, and execute schedules 11.5% shorter than is otherwise pos-
sible.

Finally, the results are presented of experiments exploring the applicability of
proactive replanning to a range of domains. We find that as the number of agents
and the impact of individual failures increase, proactive replanning provides a cor-
respondingly increased reduction in makespan.

7

1. Introduction

1.7 Summary

This thesis will present three components of a proactive replanning system: (live)
duration prediction, mutable teams, and live task modification. We have evaluated
duration prediction and mutable teams in isolation, showing their positive effect
on the efficiency of multi-agent schedules in two lunar-inspired construction sce-
narios. In addition, we have performed an extensive experiment evaluating the
effects of the three components of proactive replanning in isolation, and in var-
ious combinations, providing insight into the utility of each. Overall, we have
validated the hypothesis that a proactive replanning system is able to build and ex-
ecute complex, multi-agent schedules more efficiently and robustly than existing
planning-execution systems.

8

Chapter 2

Related Work

Prior work related to proactive replanning and our approach to it falls into three
categories: planning, scheduling, and execution systems; task duration prediction
algorithms; and work on representing mutable teams, or modifying them during
execution. We will discuss how existing systems address the concepts of proactive
replanning, then survey a variety of algorithms related to the prediction of task
duration or similar properties, and conclude with a discussion of work related to
mutable teams and live task modification.

2.1 Planning, Scheduling, and Execution Systems

There are two major components to consider when evaluating the architecture of a
proactive replanning system: the planner/scheduler itself and how it interacts with
the lower-level elements of the system. We will discuss existing planners, then
cover architectures into which they have been integrated.

2.1.1 Planners / Schedulers

The demands of proactive replanning on the planner are significant, including sup-
port for durative actions, temporal constraints, exogenous events, multiple agents
(or at least metric resources), and the ability to quickly replan or repair a plan in
response to feedback from the executive. Many existing planners are unsuited to
such domains.

Classical planning approaches such as those using the STRIPS formulation
(Fikes and Nilsson, 1971) are of limited use due to their modeling of actions as
instantaneous transitions between states. Since the core of our approach to proac-
tive replanning is to monitor task progress and modify teams during execution,

9

2. Related Work

the planner must model actions as having duration and being interruptible. Some
classical planning approaches have incorporated durative actions. For example,
the PDDL2.1 Level3 language (Fox and Long, 2002) extends the classical PDDL
language to allow the specification of durative actions, preconditions and effects at
the start and end of durative actions, and invariant conditions. However, PDDL2.1
maintains the representation of an action as a transition between two states, and
time points within the transition cannot be specified. This makes any expression
of duration prediction or live task modification impossible, and renders planners
such as TLplan (Bacchus and Ady, 2001), TGP (Smith and Weld, 1999), O-Plan
(Currie and Tate, 1991), and SHOP2 (Nau et al., 2001) unable to take advantage of
the benefits of proactive replanning.

Conformant and conditional planners also are not applicable to domains amenable
to proactive replanning. Conformant planners such as CGP, (Smith and Weld,
1998), CMBP (Cimatti and Roveri, 2000), and C-PLAN (Ferraris and Giunchiglia,
2000) produce plans containing only actions that will lead to the goal regardless
of the current state. In the complex, durative domains that proactive replanning is
most suited for, this is far too restrictive, as such actions almost never exist. Con-
ditional planners such as SGP (Weld et al., 1998), MBP (Bertoli et al., 2001), and
GPT (Bonet and Geffner, 2000) attempt to build plans with branches based on the
results of sensing actions. Again, the complexity of the domains we are consider-
ing becomes an insurmountable issue, as the set of all possible state traces becomes
much too large to enumerate.

The design-to-time (Garvey and Lesser, 1995) approach to real-time schedul-
ing endeavors to dynamically build the best schedules possible within a constrained
amount of time, preferring those that maximize some measure of quality, while
minimizing duration. It operates upon a hierarchical representation of tasks, re-
ferred to as TAEMS, where any given task may have a variety of alternatives that
have differing qualities and duration. Uncertain durations and qualities are rep-
resented as (very) discrete distributions. Execution is periodically stopped and
the progress being made by active tasks is evaluated. Alternative tasks may be
swapped in at these discrete, pre-selected monitoring points. While design-to-time
shares many characteristics with proactive replanning, it is difficult to represent and
reason about mutable teams within the TAEMS framework. The potential applica-
tion of C-TAEMS (an extension of TAEMS) to proactive replanning is evaluated in
Section 6.3.3. In addition, the nature of design-to-time’s monitoring points is in-
compatible with proactive replanning’s continuous approach to duration prediction
and execution: in proactive replanning, we make every effort to ensure that exe-
cution proceeds uninterrupted. Finally, when adjusting the scheduling in response
to execution-time feedback, a proactive replanner reasons about modifying a task,
while design-to-time instead replaces a poorly performing task with a different

10

2.1. Planning, Scheduling, and Execution Systems

method, which does not share any state with its predecessor.
Design-to-criteria (Wagner and Lesser, 1999) is based upon design-to-time,

expanding it to include a variety of hard and soft constraints relating to time, re-
sources, task interactions, and inter-agent commitments. The schedules generated
by design-to-criteria may contain uncertainty and known potential failure points,
with the expectation that rescheduling will occur during execution. Scheduling and
rescheduling is guided by a set of criteria, expressing preferences for the overall
duration, cost, and/or quality of the final plan, allowing high-level manipulation of
the planner’s strategy. While design-to-criteria is much more flexible than design-
to-time, it shares the same shortcomings with respect to the problems proactive
replanning addresses.

Work on schedule revision (also known as reactive scheduling), such as the
OPIS (Smith (1988), Smith et al. (1990)) and GERRY (Zweben et al., 1992) sys-
tems, focused on repeatedly selecting and applying heuristic-based methods to re-
pair conflicts or optimize a schedule. These approaches are conceptually similar to
our approach, in that they are designed to incorporate information from the partial
execution of a schedule (such as task completions and machine breakdowns), and
revise it minimally, rather than rescheduling from scratch. OPIS is also able to
modify executing tasks to a limited extent. For instance, if an agent breaks down,
OPIS will divide any active tasks to allow the remainder of the task to be scheduled
on a new agent. The primary differences between this work and ours are a matter of
the scope of schedule revisions and duration models. Schedule revision generally
occurs at task boundaries, while we continually update our duration predictions
and proactively modify the schedule in response to changes in a task’s ongoing
execution. In addition, these schedule revision systems make use of deterministic
estimates of duration, while we model a fine-grained discrete distribution, increas-
ing the power and complexity of the reasoning that we are able to perform about
task durations.

Alternative approaches describe the world as a set of state variables, each as
a function of time. Each variable has an associated timeline, which encodes the
variable’s past states and predicted future states, given the current plan. A task
is an interval on one or more of these timelines, within which the values of the
associated variables change. This formulation is much more amenable to proac-
tive replanning, as this representation of tasks lends itself to mid-task analysis. A
number of planners use such formulations; we will discuss three: ASPEN (Chien
et al., 2000b), EUROPA (Frank and Jónsson, 2003) (the successor to HSTS (Smith
(1993), Muscettola (1994)), and IxTeT (Laborie and Ghallab, 1995). All of these
planners are capable of handling a range of resource types (e.g. reusable or con-
sumable) through the use of underlying constraint networks and constraint satis-
faction techniques.

11

2. Related Work

Given a set of goals, a plan (initially empty), the current state, and the predicted
variable timelines, ASPEN performs iterative plan repair to resolve conflicts in
the predicted schedule. Repair and optimization steps may be interleaved as the
state of the system is updated1, using a most-commitment strategy (all variables
are grounded as early as possible). This strategy makes the evaluation of metrics
and projections of resource usage much simpler, but reduces the plan’s flexibility.
ASPEN is a good fit to proactive replanning, although it lacks explicit multi-agent
support, and heuristics aware of the structure of mutable teams and tasks with
optional roles had to be developed. We have built our implementation of proactive
replanning using ASPEN as a base.

EUROPA is a constraint-based interval planner that casts the planning problem
as a dynamic constraint satisfaction problem. It also makes use of timelines, is
functionally similar to ASPEN. However, it makes use of flexible time, rather than
fixed times: a task in EUROPA is constrained to occur within an interval, rather
than scheduled to run at a specific time. This flexibility may provide greater lever-
age for duration prediction, as the predicted duration distributions may be incorpo-
rated more directly into the plan. However, a flexible time approach complicates
the use of mutable teams, especially when ensuring that a required role is filled
throughout a task.

IxTeT also plans by using timelines, each of which consists of a sequence of
temporal assertions which can represent either the persistence of a value over an in-
terval or an instantaneous change of value. IxTeT is based on a partial-order causal
link (POCL) planning process with constraint-satisfaction techniques and gener-
ates order-constrained plans with unbound variables. These plans are more flexible
at execution time than the fully grounded plans produced by ASPEN, but make it
significantly more difficult to evaluate metrics and predict conflicts. While IxTeT
can perform plan repair through search in the partial plan space, the importance to
proactive replanning of metric evaluation and conflict prediction make IxTeT less
suited to proactive replanning than ASPEN.

2.1.2 Architectures: Integrating Planning and Execution

Architectures serve to tie together the different elements of an autonomous system
into a cohesive whole, and define how these components interact. Such archi-
tectures commonly have been divided into two or three primary components: a
functional layer that interacts with hardware and executes low-level commands;
and a decisional layer that determines what commands should be executed (Alami
et al. (1998), Volpe et al. (2000)). The decisional layer often is split into a high-

1The mix of repair and optimization steps is determined by the enclosing architecture.

12

2.1. Planning, Scheduling, and Execution Systems

level deliberative planner and a mid-level execution layer responsible for oversee-
ing the functional layer (Bonasso et al. (1997), Gat (1992)). Proactive replanning
requires a close, high-frequency connection between the planning and executive
layers, ensuring that the planner is kept up to date on execution progress, may con-
tinuously replan, and may affect currently executing tasks. Existing architectures
“lock” currently executing tasks to prevent the planner from modifying them; this
is the primary architecture-related impediment to the implementation of proactive
replanning.

Due to the need to rapidly re-evaluate team composition during task execu-
tion, the “Sense-Plan-Act” approach exemplified by the PLANEX system used on
Shakey (Fikes et al., 1972) is not applicable. Similarly, batch planning such as
that used in the Remote Agent experiment (Bernard et al., 2000) (Muscettola et al.,
1998) is unable to take advantage of the dynamic nature of proactive replanning
domains.

“Reactive planning” techniques, in which the executive is endowed with lim-
ited planning capabilities and (if present) the planner is used similarly to batch-
planning, are not applicable to proactive replanning, as they do not predict state
values sufficiently far into the future. Since one of proactive replanning’s benefits
is the ability to prevent predicted problems, the long-term projection of state values
is a crucial component. Examples of reactive planners include those that simply
choose among available tasks and perform some failure recovery, such as RAP
(Firby, 1994), ESL (Gat, 1997), and TDL (Simmons and Apfelbaum, 1998) and
transformational planners such as XFRM (Beetz and McDermott, 1994). While
such techniques would be useful in an executive as part of a proactive replanning
system, a longer-term scheduling approach also is required.

Three-layer architectures such as 3T (Bonasso et al., 1997) and ATLANTIS
(Gat, 1992) may be adaptable to proactive replanning, but the ties between their
planning and executive layers generally are not tight enough to support continuous
replanning and live task modification.

A number of architectures, such as IPEM (Ambros-Ingerson and Steel, 1988),
ROGUE (Haigh and Veloso, 1998), and SIPE (Wilkins, 1988) have implemented
continuous planning, in which planning and execution are seamlessly interleaved.
However, IPEM and ROGUE are purely classical planning approaches, while SIPE
does not explicitly represent time, rendering them not applicable to proactive re-
planning.

LAAS (Alami et al., 1998)2 and CLARAty (Nesnas et al., 2003) (Volpe et al.,
2000) both encapsulate planning/scheduling and execution into a single layer. In
the case of LAAS, the two are tightly intertwined, while in CLARAty the deci-

2IxTeT is the planning component of LAAS, which is named after the lab that developed it.

13

2. Related Work

sional layer still contains distinct planning and execution objects. At the moment,
two instances of CLARAty’s decisional layer are available: CASPER (Chien et al.,
2000a) and CLEaR (Estlin et al., 2001). CASPER uses the ASPEN (Chien et al.,
2000b) planner and a simple executive, while CLEaR adds a TDL-based (Simmons
and Apfelbaum, 1998) executive to CASPER. Both LAAS and CLARAty appear
well-suited to proactive replanning, due to the relatively tight coordination pos-
sible between their respective planning and execution components. However, as
currently implemented, neither is able to modify a currently executing task, since
active tasks are locked to avoid conflicts between planner and executive. In fact,
Chien et al. (2000a) states that ensuring the planner does not modify executing
tasks is an explicit problem that must be solved in order to perform interleaved
plan execution and repair. In order to realize proactive replanning, and specifically
live task modification, this restriction on the modification of executing tasks must
be relaxed to allow the planner to dynamically change the allocation of agents. Due
to concerns about how well IxTeT (LAAS’s planner) could be adapted to proactive
replanning, we selected CASPER as a foundation for our work.

The final relevant architecture is IDEA (Dias et al., 2003) (Muscettola et al.,
2002), which advocates the use of planning as the core of each level of abstrac-
tion, from mission planning to reactive execution. Rather than using a deliberative
planner and a specialized executive, IDEA instead uses a constraint-based planner
for both planning and execution: at the planning level, a long horizon is used to
construct longer-term schedules, while the executive ensures that the short-term
schedule remains valid. As currently implemented, the two planning horizons are
disjoint: the long-term planner may not affect tasks that have begun execution.
To support proactive replanning, this segregation would need to be relaxed: the
long-term planner must be able to modify executing tasks. IDEA’s inter-module
communications appear sufficient for the short-term planner to keep the long-term
planner abreast of developments. IDEA makes use of the EUROPA planner as its
internal planning module.

2.2 Duration Prediction

To our knowledge, no existing planning/execution systems dynamically predict the
remaining duration of a task. However, the problem may be cast as the approxi-
mation of a function (the duration distribution), given a set of training data. Much
applicable research has been performed on various aspects of function approxi-
mation. We are interested in predicting a distribution across a continuous metric
(remaining duration) given a collection of continuous and discrete state inputs (the
training data and current task state), under the Markovian assumption. There are

14

2.2. Duration Prediction

two elements to this problem: (1) predicting the duration distribution at a specific
point in the state space, and (2) generalizing this to allow predictions across the
entire space with relatively sparse training data.

The first portion of the problem has been well-studied by the function approx-
imation community. Parametric distributions, such as the gamma and normal, can
be fit to arbitrary data using approaches such as maximum likelihood estimation
(Kay, 1993). However, parametric distributions make assumptions about the un-
derlying distribution that may not hold, especially when predicting the duration
of tasks executed in dynamic, uncertain environments that may have multi-modal
underlying distributions.

Nonparametric approaches such as thin-plate splines (Bookstein, 1989) and
piecewise linear regression are able to fit arbitrary functions, and in general are
sufficient for the first portion of the problem. However, they break down when
generalizing across larger numbers of dimensions.

Approaches such as multivariate adaptive regression splines (Friedman, 1991),
locally weighted projection regression (Vijayakumar and Schaal, 2000), and neu-
ral networks are capable of approximating functions from high-dimensional input
spaces. While all could be utilized for duration prediction, when we applied them
to our domain, fitting times tended to be long and over-fitting often occurred.

Belker et al. (2003) use model trees (Karalic, 1992) (Quinlan, 1992) to predict
the expected duration of a task, given previous observations. This approach pro-
vides a piecewise linear regression model of the duration function, and outputs a
single estimate of duration. It is unclear how this approach could be extended to
predict distributions across task duration.

Meuleau et al. (2004) use kd-trees to condense plateaus in a value function
to achieve a more compact representation. This is not directly applicable to our
problem, as remaining duration often scales smoothly with the task state variables,
rather than forming plateaus, but presents one possible approach to generalizing a
large data set.

We have previously (Sellner et al., 2005) modeled the expected duration of a
task that may be attempted multiple times by either a human operator or an au-
tonomous system. This work focused on the allocation of the task to either human
or autonomous control, and resulted in an estimate of task duration for the two
possible assignments of the next attempt at the task. Although the work could
be used to integrate humans into a duration prediction algorithm, it is not directly
applicable.

We have selected a modified form of kernel density estimation (KDE) (Silver-
man, 1986) as our prediction method. KDE is a nonparametric method that is able
to estimate an arbitrary distribution from training data without making assumptions
about the structure of the underlying distribution. It places “kernel” distributions

15

2. Related Work

around each training point, then combines the kernels to form an estimate of the un-
derlying distribution. This allows KDE to model arbitrary distributions, including
multi-modal distributions that cannot be captured by most parametric approaches.
In addition, KDE is able to form a (very approximate) estimate with minimal train-
ing data. KDE is not subject to over-fitting, as it operates directly from the data,
and is able to interpolate to a degree between data points. KDE is discussed in
detail in Sections 3.3 and 5.4.

2.3 Mutable Teams and Live Task Modification

To the best of our knowledge, neither mutable teams, nor live task modification,
have been implemented as, or even considered for, a component of a planning/ex-
ecution system. At most, existing planners are able to abort currently-executing
tasks or specify one of a set of possible teams, with no mid-task changes to the
team profile. However, a variety of research topics touch upon different aspects of
mutable teams and live task modification.

2.3.1 Multi-robot task allocation

The multi-robot task allocation problem (MRTA) is concerned with finding the op-
timal assignment of robots to a set of tasks. While mutable teams and live task
modification bear some similarity to the problem, they are in fact complementary.
Live task modification is concerned with adding or removing agents to, or from,
executing multi-agent tasks in response to observations, while MRTA is generally
considered to be a static optimization problem (Gerkey and Mataric, 2003). There
has been some work on “dynamic” MRTA (Strens and Windelinckx, 2005), but the
authors define a dynamic MRTA problem as one in which new tasks arrive at ran-
dom times, and must be accommodated by the scheduler. Their work still makes
the implicit assertion that any task that has begun execution is immune to modifi-
cation by the planner/scheduler. Mataric et al. (2003) discuss MRTA incorporating
the possibility of agents taking an opportunistic strategy in which they may release
their current task in favor of a different one. However, all tasks are performed by a
single agent, precluding live task modification as formulated here, as there are no
teams to modify.

2.3.2 Swarms

Many swarm, or emergent, approaches to multi-agent systems (Correll and Marti-
noli, 2004) (Mataric, 1992) can be considered to be conducting live task modifica-
tion with mutable teams, as agents may be freely added to, or removed, from the

16

2.4. Summary

team without dramatically affecting performance. However, we are interested in
problems in which teams of agents perform highly coordinated tasks, rather than
the loosely coupled foraging, inspection, or mapping tasks common to swarming
algorithms. Reasoning within a swarm is performed locally on each agent, with lit-
tle to no explicit coordination between agents, and no central control. This works
well for loosely coupled tasks, but we are examining highly coordinated domains
where agents must closely coordinate their actions (e.g. multiple robots carrying a
large object), and must be able to respect temporal constraints between tasks. The
decentralized, minimally coordinated approach taken by swarms does not translate
well into our domains of interest.

2.3.3 Role Exchange

The MOVER architecture (Jennings and Kirkwood-Watts, 1998) provides the abil-
ity to procedurally add, remove, or substitute agents on a team. However, the
conditions for such team changes must be prespecified in a policy for each task.
There is no planner using this capability to improve the overall performance of
the scenario; instead, teams are reactively modified based on local information and
policy. This is a limited form of mutable teams, although its lack of planner inte-
gration falls short of proactive replanning.

The work of Stone and Veloso (1998) supports the periodic exchange of roles
between members of a team, but only addresses domains in which there is a single
team. In addition, there is no tight inter-agent coordination in their domain (robotic
soccer). As a result, agents may freely move between roles with no need for ex-
plicit addition or removal tasks. A significant body of work exists that addresses the
dynamic assignment of roles within a robotic soccer team (e.g. Emery et al. (2002)
and Tambe et al. (1999)), but is subject to the same domain characteristics as Stone
and Veloso’s work. Live task modification addresses the dynamic (re)allocation of
agents between many teams in order to efficiently perform a scenario, rather than
reshuffling agents within a team. This type of reshuffling can be considered to be a
constrained form of mutable teams, but does not explore the challenges of coordi-
nating the transfer of agents between teams. This work also does not represent the
concept of optional roles: instead, agents are being exchanged between a fixed set
of required roles.

2.4 Summary

There are three broad areas of work related to proactive replanning: existing plan-
ners and planning/execution architectures, duration prediction algorithms, and ap-

17

2. Related Work

proaches to mutable teams and live task modification. The ASPEN and EUROPA
planners appear to be the best suited to proactive replanning applications, due to
their support for durative actions, temporal constraints, exogenous events, metric
resources, and continuous replanning. The CLARAty/CASPER and IDEA archi-
tectures (which incorporate ASPEN and EUROPA, respectively) are both good
fits for proactive replanning, as they provide the potential for the tight planner-
executive ties necessary for successful proactive replanning. Work in the area of
function approximation is best suited to duration prediction, although no prior work
addresses the precise problem we are solving. A variety of approaches similar to
mutable teams and live task modification exist, but no planning/execution systems
incorporate the dynamic shifting of agents between teams in the process of execut-
ing tasks, nor do existing planners represent optional roles or the commitment of
agents to only a portion of a task.

18

Chapter 3

Background

As with most worthy endeavors, proactive replanning would not have been possible
had we not been able to build upon the work of others. This chapter discusses
the core technologies upon which we have designed our approach to proactive
replanning. While we have selected a specific planning / execution system upon
which to base this implementation, note that proactive replanning is applicable to
a broad range of planners.

We have made use of three primary technologies: ASPEN, CASPER, and ker-
nel density estimators. ASPEN (Chien et al., 2000b) is an iterative-repair planner
developed at the Jet Propulsion Laboratory that we have extended to support the
various tenets of proactive replanning. Its design renders it amenable to proactive
replanning, as well as allowing its straightforward extension. We discuss ASPEN’s
structure here, as well as the extensions we have made to its core to support proac-
tive replanning. CASPER (Chien et al., 2000a) is the planning/execution system
developed by the Jet Propulsion Laboratory that makes use of ASPEN as its plan-
ning element. CASPER provides several viable executives: we have made use of
the relatively simple, single-threaded option, but a more flexible TDL-based (Sim-
mons and Apfelbaum, 1998) executive is also available. Finally, kernel density
estimation (Silverman, 1986) is at the core of our approach to duration prediction.
It has been applied to a wide range of domains, and is an extremely flexible method
for extrapolating distributions from a data set.

3.1 ASPEN Planner

ASPEN (Automated Scheduling/Planning ENvironment, (Chien et al., 2000b)) is a
modular planning/scheduling system designed to support a wide range of schedul-
ing domains, with a focus on spacecraft operations and the autonomy necessary

19

3. Background

there. As with other iterative-repair planners, ASPEN generates an initial (usually
flawed) plan, then iteratively repairs detected conflicts until the schedule is valid.
ASPEN provides a core set of capabilities that the domain expert may extend in a
variety of fashions to better represent the domain in question. These extensions pri-
marily take the form of heuristics, which are used throughout ASPEN’s plan repair
and optimization processes. In addition, we have extended the core of ASPEN to
provide capabilities necessary to operate efficiently in our experimental domains.

3.1.1 ASPEN Core

The core of ASPEN consists of five main components: the schedule database, the
temporal constraint network, a set of timelines, the parameter constraint network,
and a set of repair and optimization methods.

Schedule Database

ASPEN’s schedule database is the central repository of information about all tasks1

currently on the schedule or under consideration. A task, the basic unit of data
operated on by ASPEN, represents the actions that must be taken to accomplish
some goal, and has an associated start time, end time, and duration. In addition,
a task may require a certain set (or amount) of resources, contain a set of internal
and external parameter dependencies, and be temporally constrained relative to
other tasks. Tasks also may be explicitly hierarchical, with one or more possible
decompositions into sets of subtasks. This decomposition facility allows schedules
to be reasoned about at a variety of levels of abstraction, given an appropriate
domain structure. The schedule database tracks and maintains the relationships
within a hierarchical task tree. The database serves as the central hub through
which other ASPEN modules interact, and facilitates rapid operations upon tasks
or groups of tasks.

Temporal Constraint Network

A Temporal Constraint Network (TCN) is a graph-based structure used to represent
temporal constraints between points in different tasks. In ASPEN, constraints may
be applied to either the start or end time of a task to impose temporal constraints
such as ordering, minimum spacing, or maximum spacing. Nodes in the TCN are
the end points of tasks, with each edge representing a constraint between a pair of

1The ASPEN literature refers to the central data structure of the system as an activity; we use
the term task interchangeably, and will refer to activities as tasks throughout this document for con-
sistency.

20

3.1. ASPEN Planner

points. All constraints in the TCN must be satisfied simultaneously for a schedule
to be valid: that is, the TCN represents the conjunction of all constraints between
active tasks in the schedule database. The TCN may be queried for the set of
currently violated constraints, and provides specialized propagation mechanisms
to propagate rapidly changes throughout the network.

In this work, the TCN is used to enforce ordering constraints on sets of tasks
that must be performed serially: for instance, the components for a communica-
tions tower must be transported to the construction site before they are assembled.
The TCN is also utilized in our representation of mutable teams to ensure that the
tasks assigning agents to a team are contained within the bounds of the cooperative
task.

Timelines

ASPEN provides two general classes of timelines: resource and state. Both rep-
resent the value of a given variable as it changes across the planning horizon, and
allow tasks to place reservations upon them. Resource timelines represent a met-
ric resource, such as battery power, available memory, or the number of available
agents. The domain specification may place upper or lower limits on the amount of
the resource that remains, with a timeline being defined as in conflict if at any point
the specified limits are violated. A schedule is invalid if at any point a timeline is in
conflict, and must be repaired until resource usage again falls within the specified
bounds.

Reservations upon a resource timeline result in a step change in the amount
of resource at the beginning of the task. This is a simplifying approximation; the
actual consumption of a resource such as battery power more likely will be ap-
proximately linear across the task’s duration. Resource timelines may be specified
as either depletable or nondepletable. Reservations on the former type result in a
permanent change in the amount of resources; depletable timelines are appropriate
for modeling a resource that may be described as being consumed. In contrast, a
reservation on a nondepletable timeline affects the available amount of the resource
only for the duration of the task, with the used amount returning once the task com-
pletes. Nondepletable resource timelines are useful for moderating contention for
a limited set of items, such as the use of a particular piece of equipment.

Atomic timelines are a specialization of nondepletable resource timelines: they
have a maximum capacity of 1, a minimum capacity of 0, and tasks may reserve
exactly one unit. These are used to ensure that only a single task may access a
given agent or piece of equipment at any given time.

In this work, we make use of nondepletable timelines to model the number of
agents assigned to cooperative tasks, ensuring that the minimum set of agents is al-

21

3. Background

ways provided. We also provide a single atomic lock timeline per agent. Each task
utilizing an agent must place a reservation on the agent’s lock timeline, ensuring
that an agent is not committed to two or more simultaneous tasks.

In addition to resource timelines, ASPEN supports state timelines. State time-
lines are used to represent a set of discrete states and the valid transitions be-
tween them. The domain designer specifies the legal states and transitions for a
given timeline. For instance, a camera may have three states: cold, warming, and
ready, if it must be warmed prior to use. Legal transitions in this case may be
cold→ warming, warming → ready, and ready → cold.

Tasks may place a reservation for a specific state on the timeline, which will re-
sult in a conflict if the timeline is not in the appropriate state during the reservation.
Tasks also may change the state of a timeline, either at the beginning or end of the
task. Any attempt to change the timeline through an illegal transition results in a
conflict that must be resolved before the schedule may be considered to be valid.

We use state timelines to represent the gross positions of agents by specifying
discrete sites of interest, such as (Lander, Habitat, and Communications), as well
as two intermediate states (Moving and Stranded). An agent is moving if it is
participating in a task that is travelling between two of the sites, and becomes
stranded if it leaves a team prior to arriving at the destination site. The only way to
transition out of the stranded state is via a Move task. This representation gives the
planner a reasonable representation of position, without the complexity of a metric
model, and enforces the need for motion tasks to reposition agents as needed.

Parameter Constraint Network

The Parameter Constraint Network (PCN)2 is used to encode arbitrary intra- and
inter-task constraints on task parameters. Every task has a set of system parameters
(e.g. start time, end time, and duration) and user-defined parameters (e.g. resource
usage, required state, or any other value). The PCN allows constraints to be es-
tablished from a set of parameters to one other parameter, either within a task or
between two separate tasks. A dependency between parameters p1 and p2 is de-
fined as a function from one to the other: p1 = f(p2). f is an arbitrary function
whose input and output types match those of p2 and p1, respectively. Note that the
inverse dependency is not guaranteed to hold, unless the user explicitly specifies
it: that is, it is possible that p2 6= f−1(p1). ASPEN includes a set of useful func-
tions, such as sum, floor, and the various inequalities. The user also may write
additional custom functions for use within the PCN.

2In some ASPEN publications, such as Fukunaga et al. (1997), the PCN is referred to as the
Parameter Dependency Network (PDN).

22

3.1. ASPEN Planner

When a value is updated, the PCN marks all dependencies for which the up-
dated value is an input as being unsatisfied. When the PCN’s satisfaction routine
is subsequently invoked, it automatically propagates values and invokes functions
to satisfy all affected dependencies. This propagation is delayed for efficiency
reasons, allowing many value updates to occur before the cost of a network prop-
agation is incurred. We utilize the PCN for duration prediction by encoding a
task’s state in a set of parameters that are updated as information arrives from the
executive. The state parameters are used as the inputs to a custom function that
invokes our prediction algorithm, and outputs the mean of the predicted duration
distribution.

Note that the TCN may be considered to be a specialization of the PCN that
operates only on the start and end time parameters. ASPEN supports the creation
of such targeted derivatives of the PCN whenever the improved efficiency is worth
the development costs.

Repair and Optimization Methods

ASPEN includes a variety of repair and optimization methods, which are hard-
coded routines that modify the schedule in an attempt to repair a conflict or op-
timize a metric. Each method contains a series of choice points where a deci-
sion must be made, such as which conflict to address, which task to move, or
which method of repair to apply. Each choice point invokes one of a set of user-
specified heuristics to make the selection, selecting a heuristic stochastically, ac-
cording to user-defined weights. A suite of generic heuristics is included with
ASPEN, but the user will normally write ones customized to the domain. The ease
with which domain-specific knowledge may be inserted throughout the decision
process greatly eases the customization of ASPEN to a given domain. Our heuris-
tics are discussed in detail in Section 8.2.

3.1.2 Approach to Planning, Repair, and Optimization

While ASPEN may be used as either a constructive or an iterative repair planner,
we utilize it exclusively in the iterative mode. When repairing or optimizing the
schedule, ASPEN selects either a conflict to repair or a metric to optimize, invokes
one iteration of an appropriate method, and repeats.

Planning and Repair

Plan repair in ASPEN revolves around the concept of a conflict. A conflict is
defined as an inconsistency in the schedule. ASPEN uses a wide variety of conflict
types to represent the various problems that may occur, such as:

23

3. Background

Algorithm 3.1 ASPEN’s basic repair algorithm.

1: int numRepairs = 0;
2: int minConflicts =∞;
3: while numConflicts() > 0

∧ numRepairs < maxRepairs
∧ timeElapsed < maxTime do

4: Select a conflict (Choice Point)
5: Select an applicable repair method (Choice Point)
6: Apply the method (Multiple Choice Points)
7: if numConflicts() < minConflicts then
8: Store current schedule as s;
9: minConflicts = numConficts();

10: end if
11: numRepairs++;
12: end while
13: if numConflicts() > 0 then
14: Reload schedule s.
15: end if

• An invalid transition on a state timeline,

• A missing task,

• An unsatisfied dependency in the PCN,

• A violated constraint in the TCN, or

• An oversubscribed resource

Schedule repair consists of the iterative selection of a conflict and the appli-
cation of a repair method; ASPEN’s high-level repair strategy is detailed in Al-
gorithm 3.1. Repair continues until the schedule is free of conflicts, or one of the
user-specified limits is reached (e.g. number of repair iterations or time consumed).
The user can increase the responsiveness of the planner by specifying such limits,
at the cost of potentially not repairing all conflicts. If a repair cycle completes
without resolving all conflicts, ASPEN reloads the interim schedule that contained
the fewest conflicts (line 14 of Algorithm 3.1).

User-specified heuristics are used to make a variety of decisions at choice
points throughout the repair process, such as those at lines 4, 5, and 6 in Algo-
rithm 3.1. Each heuristic is applicable to one or more types of choice points (see

24

3.1. ASPEN Planner

Algorithm 3.2 ASPEN’s Add repair method

1: Select a task to add that may affect the chosen conflict (Choice Point)
2: Create the task
3: Lift the task off of all timelines
4: Ground all task parameters
5: Choose a preliminary duration (Choice Point)
6: Set the task’s duration
7: Choose intervals into which the task may be placed (Choice Point)
8: Choose the start time, from the selected intervals (Choice Point)
9: Set the task’s start time

10: Choose and set a final duration (Choice Point)
11: Place the activity on the timelines

Table 3.2 for a comprehensive list of choice point types). For instance, in line 4 of
Algorithm 3.1, a heuristic is invoked to select the next conflict to repair. The user
specifies a heuristic that attempts to order the conflicts in a way conducive to their
resolution. Note that most of ASPEN’s heuristics include a stochastic component
to help avoid dead ends, as no heuristic is correct in all situations. For example,
the selection of a repair method, the choice of which conflict or task to operate on,
and the placement of a new task all involve a random element, generally weighted
towards the options that appear to be most appropriate. Once a conflict is selected,
another heuristic is applied to choose a repair method (line 5). Repair methods
are hard-coded routines for resolving a conflict that may, or may not, succeed in a
particular situation. Each method is applicable to a subset of the conflict types, and
consists of a series of operations, with choice points interspersed. For example,
Algorithm 3.2 details the Add repair method, which selects and adds a task to the
schedule. It is applicable to all conflicts except open or violated constraints. If the
user-specified heuristic invoked at any of the various choice points (e.g. Algorithm
3.2: lines 1, 5, 7, 8, and 10) fails to make a selection, the repair method fails,
and the schedule reverts to its state prior to the start of the method’s application.
ASPEN’s default repair methods are summarized in Table 3.1. We added several
methods to more efficiently support proactive replanning, which are discussed in
Section 3.1.3.

The formation of an initial schedule and the repair of an invalid schedule are
treated in the same fashion. When designing a domain model, the user specifies
the set of tasks that must be accomplished to complete the scenario successfully.
Any missing task is treated as a conflict. As a result, the repair algorithms may be
applied to an empty starting schedule to build a complete initial schedule.

25

3. Background

Table 3.1: A summary of ASPEN’s repair methods.

Method Description

Move Move a single task and recalculate its duration.

Add Add a task to the schedule.

Delete Delete a task from the schedule.

Connect Find a sink activity for an open temporal constraint.

Disconnect Disconnect a temporal constraint.

Move and Connect
Move a task, so as to allow the connection of an open
temporal constraint. This is a macro-method, combining
Move and Connect.

Add and Connect
Add a task, so as to allow the connection of an open
temporal constraint. Combines Add and Connect.

Detail
Select a hierarchical decomposition for a task not yet de-
composed, and add the chosen child tasks.

Abstract
The inverse of Detail: delete all children of a decom-
posed task.

Reserve Place a reservation on a timeline.

Cancel
The inverse of Reserve: remove a reservation from a
timeline.

Place Place an existing activity onto the schedule.

Lift
The inverse of Place: lift an activity off of the schedule,
but do not delete it.

Ground Parameter
Select a single value for a task parameter with a range of
valid possibilities.

Apply Dependency
Propagate the PCN to resolve any unsatisfied parameter
dependencies.

Redetail
Select a new decomposition for a hierarchically decom-
posed task. This is another macro-method, following an
Abstract with a Detail on the same task.

Satisfy Goal
Add an activity to satisfy a goal (a user-specified require-
ment for a particular task to occur on the final schedule).

26

3.1. ASPEN Planner

Table 3.2: A summary of ASPEN’s choice points, which are decision points within
the repair and optimization methods at which user-specified heuristics are applied.
A heuristic may be applicable to one or more of these choice points.

Choice Point Description
Conflict Select the next conflict to repair.
Resolution Method Select the repair method to apply.
Culprit to Move Select an activity to move.
Task Schema to Add Select the type of task to add.
Culprit to Delete Select a task to delete.

Culprit to Connect
Select a task to utilize in fulfilling an open con-
straint of a second task.

Culprit to Abstract Select a task to abstract.
Culprit to Lift Select a task to lift from the schedule.
Culprit to Change Duration Select a task whose duration will be changed.

Culprit to Change Parameter
Select a task containing a parameter whose
value will be changed.

Valid Interval
Determine if the task in question may be placed
within the specified time interval.

Start Time Select the start time for a task.
Duration Select the duration for a task.
Parameter Change the value of a parameter.

Ground Parameter
Select a value for a parameter from a range of
valid options.

Decomposition
Select a hierarchical decomposition for a task
from a set of possibilities.

Timeline Select a timeline upon which to operate.
Reservation to Cancel Select a reservation to be cancelled.
Preference Select a preference (i.e. metric) to be optimized.

Satisfy Goal
Select a goal to be satisfied. A goal is a user-
specified task that must occur on the schedule.

Constraint Select a violated temporal constraint to modify.
Preference
Optimization Method Select the optimization method to apply next.

27

3. Background

Optimization

ASPEN’s approach to optimization is analogous to its repair strategy, with met-
rics replacing conflicts as the focal point. The domain designer is able to specify
metrics (or preferences in the ASPEN literature) using a flexible language. It is pos-
sible to encode preferences such as tasks of type T should complete earlier, fewer
instances of tasks of type T should occur, or the sum of all instances of parameter
P for tasks of type T should be greater than 20, but less than 100. For example,
when minimizing makespan, we define a preference for the latest task end time to
be as early as possible. Each preference is assigned a weight, which guides the
heuristic that selects which preference will be addressed in the next iteration of
optimization. When optimizing, all preferences are evaluated, the resulting values
weighted, and combined into a total score. This score may be used to determine
when optimization is complete. Alternatively, the user may specify a number of
optimization iterations to perform or a maximum amount of time to spend optimiz-
ing. This allows the use of an appropriate amount of optimization for the available
time and computational power.

Algorithm 3.3 details ASPEN’s basic optimization algorithm. Many of the
choice points within ASPEN’s optimization methods overlap those used during re-
pair, and the same heuristics may be applied to both. The choice point list in Table
3.2 includes all choice points used in either repair or optimization. Table 3.3 sum-
marizes ASPEN’s optimization methods. By iteratively optimizing the schedule,
each optimization method may focus on a specific situation, allowing the creation
of a suite of simple, directed heuristics and methods that are applied only when
interest in relevant preferences has been indicated.

3.1.3 Extensions to ASPEN

In the course of researching proactive replanning, we extended the ASPEN core in
a number of ways to add useful functionality and increase the efficiency of repair
and optimization. We implemented several new repair and optimization methods,
added the concept of user-defined callback functions, extended the expressiveness
of ASPEN’s state timeline reservations, and added a combined optimize and repair
algorithm.

Repair and Optimization Methods

We extended ASPEN’s suite of repair and optimization methods with four new
methods: transfer, add & setup, swap, and right shift. Transfer and add & setup
are applicable to both repair and optimization, while swap is used only during
optimization and right shift is used only during repair.

28

3.1. ASPEN Planner

Algorithm 3.3 ASPEN’s basic optimization algorithm.

1: int numOptimizations = 0;
2: double bestScore = calcPreferenceScore();
3: while numOptimizations < maxOptimizations

∧ calcPreferenceScore() < maxScore
∧ timeElapsed < maxTime do

4: Select a preference (Choice Point)
5: Select an applicable optimization method (Choice Point)
6: Apply the method (Multiple Choice Points)
7: if calcPreferenceScore() > bestScore then
8: Store current schedule as s;
9: bestScore = calcPreferenceScore();

10: end if
11: numOptimizations++;
12: end while
13: if calcPreferenceScore() < bestScore then
14: Reload schedule s.
15: end if

Table 3.3: A summary of ASPEN’s optimization methods.

Method Description

Move Move a single task and recalculate its duration.

Add Add a task.

Delete Delete a task.

Change Duration Modify the duration of a task.

Change Parameter Modify the value of a task parameter.

Abstract
Remove all children of a hierarchically decomposed
task.

Lift Remove a task from the schedule, but do not delete it.

Pack
Shift all activities as close to the start of the planning
horizon as possible, without causing conflicts.

Repair Invoke one iteration of ASPEN’s repair algorithm.

Satisfy Goal
Add an activity to satisfy a goal (a user-specified require-
ment for a particular task to occur on the final schedule).

29

3. Background

Figure 3.1: Examples of the transfer (a and b) and swap (c - e) methods. The
anchor symbol on task C indicates that it is externally constrained to occur at a
specific time.

These methods have been added for efficiency: in all cases, it is possible to
create the desired changes using ASPEN’s default set of methods, but would be
difficult to accomplish in practice. Each of our methods consists of a series of steps
that must be performed in the correct order and on the same set of tasks. ASPEN’s
methods generally operate without memory: there is no knowledge of the actions
of previously applied methods, or even which methods were recently invoked. This
makes the chaining of methods difficult, and suggests the use of macro-methods,
such as our new methods or the move & connect method in ASPEN’s default set of
methods.

Transferring encapsulates the transfer of an agent between two mutable teams,
and consists of removing an agent from one mutable team (potentially in the mid-
dle of a task), adding any necessary setup tasks, and adding the agent to another
team. For example, in Fig. 3.1(a), task A dominates the schedule’s makespan. By
transferring agent 2 from task B (Fig. 3.1(b)), the overall makespan is reduced.

The add & setup method is a subset of the transfer method used to add an
idle agent to a task. It combines the creation of any necessary setup tasks (e.g.
movement tasks) with the addition of the agent to a mutable team, performing the
same actions as transfer, with the exception of removing an agent from a team. Add
& setup is separate from transfer to simplify the reasoning about which method to
apply: when transferring, the method-selection heuristic considers the potential
impact of the transfer on candidate donor tasks. This reasoning is not necessary
when adding an idle agent.

The swap method is used to rearrange agent assignments to allow a shorter
makespan. It consists of replacing an agent on one team with either an idle agent,

30

3.1. ASPEN Planner

Figure 3.2: A task’s slack is the minimum of the slacks associated with all of
its predecessor constraints. For purposes of illustration, assume T1 has a single
required role. Here, T4 has an implicit agent resource constraint to T3 (with slack
S1) and a role constraint to T2 (with slack S2), resulting in zero slack for T4.

or an agent from another team. If the latter, the replaced agent is assigned to the
second team. Fig. 3.1(c) depicts a schedule in which tasks A and B tasks are
serialized due solely to contention for a single agent. Task C is performed by
a second agent, but is pinned in place due to external constraints. By swapping
agents 1 and 2 between tasks B and C (Fig. 3.1(d)), task B may be executed
earlier, reducing the schedule’s makespan (Fig. 3.1(e)). This often is useful in
domains with many multi-agent tasks, where an overlap of one agent between two
tasks may needlessly prevent the schedule’s compaction.

The right shift method is used to repair short conflicts resulting from over-
lapping tasks assigned to the same agent or violated temporal constraints. When
applied, it shifts the start of a conflicting task far enough into the future to resolve
the conflict in question. In a dense schedule, this will often result in a new conflict,
as the shifted task overlaps the tasks scheduled to follow it. To avoid this cascade of
conflicts, right shift calculates the tree of successor tasks that depend on the shifted
task, then shifts the entire tree into the future. Once the shift is complete, the
schedule is repacked, to remove any introduced inefficiencies. The successor tree
is constructed by following explicit temporal constraints and implicit constraints
due to the use of atomic resources, such as agents.

Critical Path Calculation and Packing

Many of our optimization heuristics are focused on reducing the critical path: the
sequence (or sequences) of tasks that control the overall length of the schedule,
and form a chain of constraints. The slack of a task is defined as how much earlier
the task may be started than currently scheduled, without violating any constraints,
and is calculated as the minimum of the slacks associated with each of the task’s
constraints. As ASPEN does not include a critical path detection routine, we de-
veloped our own that is also aware of a variety of domain-specific constraints.

When calculating the critical path, we first calculate the set of tasks that con-

31

3. Background

strain the start of each task. The critical path is the chain of tasks with the minimum
total slack (Fig. 3.3(a)), ending with the latest-ending task. Note that multiple criti-
cal paths may exist simultaneously, as the latest end time may be shared by multiple
tasks.

Many of our optimization heuristics make use of the critical path: operations
on tasks outside of the critical path(s) cannot directly reduce the makespan of the
schedule. For example, when optimizing the makespan by adding an agent to a
team, our heuristics prefer tasks on the critical path with an open optional role.
Similarly, when optimizing by deleting a task, we first examine the join tasks rep-
resenting agents filling an optional role on the critical path to determine if the
optional agent is constraining the cooperative task. Finally, the total slack on the
critical path is used when determining whether an expensive schedule packing ac-
tion should be undertaken.

Packing and right-shifting involve similar calculations. Packing is the removal
of as much slack as possible from the schedule, and is commonly used as an op-
timization method. When packing, the set of unexecuting tasks is iterated across,
starting with the earliest task and proceeding to the latest. Each task is moved as
far forward on the schedule as possible, removing all of its slack, as illustrated in
Fig. 3.3(b). Note that packing is performed on all unexecuting tasks in the sched-
ule, not just those on the critical path.

Unfortunately, our representation of mutable teams complicates this conceptu-
ally simply operation. We represent a mutable team as a single cooperative task
and multiple join tasks, each of which represents the commitment of an agent to a
role in the cooperative task. When packing, we consider constraints on the cooper-
ative and join tasks as a single group, and shift the entire group of cooperative and
join tasks as a unit. While this maintains the cohesiveness of the mutable team,
it is possible for another task to become “trapped” by the mutable team, prevent-
ing both from being packed. Consider the scenario in Fig. 3.4. The cooperative
task T1 has three associated join tasks: agent 1 fills the required role of T1 with
join task T2, while agent 2 fills an optional role during the beginning and end of
T1 with the join tasks T3 and T4. During the time agent 2 is not part of the team
performing T1, it is completing an unrelated task, T5. As a result, when computing
the slack prior to packing, the group of (T1, T2, T3, T4) has zero slack, due to the
agent resource constraint between T4 and T5. The slack of T5 is also zero, due to
the agent resource constraint between T5 and T3. This prevents a naive packing
algorithm from packing any of the tasks, even if both agent 1 and 2 are free prior
to the beginning of T1.

In order to prevent such situations from freezing portions of the schedule in
place, we search for any constraint loops with a total slack of zero that lead from
one member of a mutable team back into a member of the same team, such as the

32

3.1. ASPEN Planner

Figure 3.3: In (a), an unpacked schedule is depicted, with constraints between
tasks labeled with the associated slack. (b) presents the schedule that results after
packing, with tasks in contact having a slack of zero.

Figure 3.4: T5 is “trapped” by the agent resource constraints of T3 and T4 and
their constraints relative to their associated cooperative task, T1. In order to pack
a schedule containing this type of fragment, the planner must find constraint loops
that begin and end with join tasks of the same cooperative task, then move all tasks
in the loop, as well as the cooperative task, as a unit.

T4 → T5 → T3 loop. We group any tasks that are members of such loops with the
mutable team for purposes of packing, in the same fashion as the cooperative and
join tasks are grouped. Similar loop-detection and grouping is performed during a
right shift.

The example presented in Fig. 3.4 is relatively simple; in actual schedules, the
trapping of tasks may be arbitrarily complex, especially when another cooperative
task becomes involved.

33

3. Background

Figure 3.5: The planner’s model of agent position in our domain, and the allowed
transitions. An agent becomes stranded when it leaves a moving task before it
reaches its destination. This is an indication to the planner that it must add a move
task to reposition the agent prior to its next task.

Callbacks

Our broadest extension to ASPEN is the creation of user-defined callback func-
tions. We have defined a series of callback points, analogous to choice points,
throughout ASPEN’s core. These points occur wherever changes are made to tasks
or the schedule, and allow user-written code to be executed before, or after, the
associated action takes place. This allows the efficient maintenance of domain-
specific constraints, timely updating of duration predictions, and any other domain-
specific book-keeping. The current set of callback points is listed in Table 3.4. We
primarily make use of callbacks to maintain the relationship between cooperative
and join tasks. Cooperative tasks represent a multi-agent task, while join tasks en-
code the commitment of a specific agent to participate in the task for a particular
interval of time. Cooperative and join tasks are discussed in detail in Chapter 6.

Reservations

The standard version of ASPEN is able to place a reservation on a state timeline
requiring that the timeline maintain a specific state for the duration of a task. If that
requirement is not met, a conflict occurs. However, in modeling our experimental
domains, we identified the need for pre- and post-conditions on state timelines: we
needed to specify that the state timeline must have a particular value prior to the
start of the task, or after the task completed. We extended ASPEN’s domain rep-
resentation language and concept of state reservations to support the specification
and enforcement of pre- and post-conditions.

Specifically, this was needed when modeling agent motion. As discussed in
Section 3.1.1, we model the position of each agent with a set of discrete locations,

34

3.1. ASPEN Planner

Table 3.4: A summary of the callback points we have added to ASPEN. User
callback functions may be invoked at any point, in the same manner as heuristics
are invoked at choice points.

Point Description

Add Occurs after a task is added to the schedule.

Delete Occurs prior to the deletion of a task.

Pre-Move
Occurs prior to a task movement, allowing the user to
cache the position of the task prior to the move.

Move Occurs after a task has been moved.

Pre-Duration
Change

Occurs prior to a change in a task’s duration, allowing
the user to cache the duration prior to the change.

Duration Change Occurs after a task’s duration has changed.

Place Occurs after a task has been placed on the schedule.

Lift Occurs after a task has been lifted from the schedule.

Detail
Occurs after a decomposition has been selected for a
task.

Redetail
Occurs after the decomposition of a task has been
changed.

Abstract
Occurs after the children of a decomposed task have
been deleted.

Pre-Repair
Occurs prior to each iteration of ASPEN’s repair algo-
rithm.

Post-Repair Occurs after each iteration of ASPEN’s repair algorithm.

Pre-Optimize
Occurs prior to each iteration of ASPEN’s optimization
algorithm.

Post-Optimize
Occurs after each iteration of ASPEN’s optimization al-
gorithm.

Pre-Step Occurs prior to each simulated execution step.

Post-Step Occurs after each simulated execution step.

Commit Occurs after a task has been committed to the executive.

35

3. Background

a moving state, and a stranded state (Fig. 3.5). Agents are moving while they are
participating in a task that is transitioning between discrete locations. They enter
the stranded state if they leave a moving task prior to its completion, and an indi-
vidual move task must be added to the schedule in order to exit the stranded state.
As a result of this model, an agent participating in the entirety of a moving task
must be in the original location prior to the task’s start, in the moving state during
the task, and in the destination location after the task’s end. While this could have
been modeled with three end-to-end tasks, the resulting schedule would be exces-
sively complicated, artificially increasing the difficulty of repair and optimization.

Optimization and Repair

When we began to optimize schedules in ASPEN, we encountered two shortcom-
ings in ASPEN’s approach: it was very difficult to interleave optimization and
repair, and there was no way to backtrack if adequate progress was not being made
during either repair or optimization. We developed an alternative to ASPEN’s opti-
mization and repair algorithms to address these shortcomings (Algorithms 3.4 and
3.5, respectively). Our alternative optimization algorithm is used exclusively dur-
ing the experiments reported in this thesis, while our repair algorithm is used when
repairing the schedule during execution and after optimization.

In ASPEN, it is possible to invoke a set number of optimization iterations after
each step of execution, preceded and/or followed by the repair of any conflicts in
the schedule. Since optimization methods in ASPEN are allowed to create con-
flicts, this requires the optimization heuristics to be able to reason about schedules
containing conflicts, if more than one iteration of optimization is to be performed.
This requirement greatly increases the heuristics’ complexity. Our alternate algo-
rithm instead interleaves optimization and repair by repairing the schedule after
each iteration of optimization (Algorithm 3.4, lines 8-11), allowing the optimiza-
tion heuristics to assume that the schedule is conflict-free.

ASPEN’s iterative, memoryless approach to repair and optimization also cre-
ated inefficiencies. If a poor decision was made that created many new conflicts or
greatly increased the makespan of the schedule, there was no mechanism to retract
the decision or otherwise backtrack to a previous point in the repair or optimization
process. As a result, a single poor decision significantly degraded the efficiency of
the process, as many iterations had to be expended to compensate. In order to
lessen the impact of incorrect heuristics, we introduced a form of backtracking
into our alternative optimization and repair algorithms (Algorithms 3.4 and 3.5,
respectively).

After each optimization (and any resulting repair), the schedule’s score is eval-
uated. If the schedule has the best score observed to date, it is stored for future use

36

3.1. ASPEN Planner

Algorithm 3.4 Our extended optimization algorithm. Differences from the basic
algorithm (Algorithm 3.3) are italicized.

1: int numOptimizations = 0;
2: double bestScore = calcPreferenceScore();
3: int bestScoreI = 0;
4: double reloadFraction = 0.9; {User-specified.}
5: int reloadDelay = 10; {User-specified.}
6: while numOptimizations < maxOptimizations

∧ calcPreferenceScore() < maxScore
∧ timeElapsed < maxTime do

7: Invoke Algorithm 3.3 with numOptimizations = 1, but without reloading.
8: if numConflicts() > 0 then
9: Invoke Algorithm 3.5 to repair all conflicts.

10: Pack (left-shift) the schedule.
11: end if
12: if calcPreferenceScore() > bestScore then
13: Store current schedule as s;
14: bestScoreI = numOptimizations;
15: end if
16: if calcPreferenceScore() < reloadFraction * bestScore

∧ numOptimizations - bestScoreI ≥ reloadDelay then
17: Reload schedule s;
18: end if
19: numOptimizations++;
20: end while
21: if calcPreferenceScore() < bestScore then
22: Reload schedule s.
23: end if

(Lines 12-15, Algorithm 3.4). If instead the score is less than a specified fraction
of the best score observed so far, and at least a given number of optimizations have
occurred since the last reload (e.g. backtrack), the best schedule is reloaded before
optimization continues (Lines 16-18, Algorithm 3.4). This form of backtracking
allows the optimization algorithm to make decisions that may temporarily worsen
the score, while ensuring that the schedule does not degrade significantly over time.

We applied this form of backtracking to repair by taking an iterative deepening
approach, rather than using ASPEN’s standard linear repair algorithm. The stan-
dard approach continues to apply repair methods until a valid schedule is built, with

37

3. Background

Algorithm 3.5 The iterative deepening repair algorithm.

1: double repairDepth = 20; {The initial value is user-configurable.}
2: double deepeningScale = 1.5; {Also user-configurable.}
3: Store schedule as s;
4: while numConflicts() > 0

∧ timeElapsed < maxTime do
5: Invoke Algorithm 3.1 with numRepairs = repairDepth.
6: if numConflicts() > 0 then
7: Reload schedule s;
8: repairDepth *= deepeningScale;
9: end if

10: end while

no backtracking. When repairing conflicts resulting from an optimization attempt
or the update of a task’s predicted duration, a valid schedule often may be achieved
after a relatively few iterations of repair, but a poor choice at one of the repair al-
gorithm’s choice points may cause additional conflicts, resulting in an excessively
long and disruptive repair cycle. Our approach (Algorithm 3.5) initially performs
N iterations of repair. If, at the end of this repair cycle, the schedule is still in-
valid, we backtrack to the initial schedule, increase N , and repeat. This continues
until a valid schedule is found. N is multiplied at each stage by a user-defined
value, steadily increasing the allowed number of repair iterations. This approach
is successful because of the stochastic nature of our heuristics: a sequence of de-
cisions will almost never be repeated, even when starting from the same initial
state. While a poor choice still will result in wasted effort, the mistake is recov-
erable during the next backtrack. We use Algorithm 3.5 when repairing conflicts
resulting from execution-time anomalies or optimization attempts.

3.2 CASPER Execution System

CASPER (Continuous Activity Scheduling, Planning Execution and Replanning)
(Chien et al., 1999) (Estlin et al., 2000) extends ASPEN to address dynamic plan-
ning and scheduling applications. It adds a real-time system (i.e. executive) ca-
pable of monitoring the execution of a plan and providing updates to ASPEN as
tasks begin or end, states change, and resources are used (Fig. 3.6). The updates
may introduce conflicts or opportunities into ASPEN’s plan, which are addressed
through plan repair and optimization. The vision for CASPER, as articulated in
Estlin et al. (2000), is to support distributed, dynamic, and continuous replanning.

38

3.2. CASPER Execution System

Figure 3.6: The CASPER architecture. The Planner, Schedule Database, and
Timeline Manager components comprise the ASPEN proper. Adapted from Chien
et al. (1999), where the Executive is termed a Real Time System.

Algorithm 3.6 CASPER’s execution algorithm, per Chien et al. (1999).

1: Initialize P to the null plan
2: Initialize G to the null set
3: Initialize S to the current state
4:

5: Given a current plan P and a current goal set G:
6: loop
7: Update G to reflect new goals or goals that are no longer needed.
8: Update S to the revised current state
9: Compute conflicts on (P,G, S)

10: Apply conflict resolution planning methods to P (within resource bounds)
11: Release relevant near-term activities in P for execution
12: end loop

A central batch-mode planner is suggested, working at a relatively abstract level to
assign tasks among a set of agents. Each agent utilizes a local planning and execu-
tion system to accomplish the assigned tasks, with updates to the plan occurring as
tasks complete. The individual agents repair and optimize their plans in response to
the provided updates, without the need for interaction with the centralized planner
or remote human controllers. The CASPER framework provides each agent with
this localized replanning capability.

We have utilized CASPER in a centralized fashion, planning for multiple (sim-

39

3. Background

ulated) rovers while accepting state updates from the entire team. In addition, we
have extended CASPER and ASPEN to provide state updates throughout the ex-
ecution of a task, which we utilize to predict the remaining duration of a task as
execution proceeds. This provides our proactive replanning framework with the
ability to detect conflicts and opportunities earlier than is possible with the stan-
dard CASPER system, and allows more efficient schedule execution.

CASPER provides two implementations of the executive3 in Fig. 3.6. The first
implementation is embedded in the same thread of execution as ASPEN, and pro-
vides a tight link between the two. The embedded executive is able to update the
schedule database and timeline manager directly, minimizing the delay between
when an execution anomaly is detected and when the planner is informed. This
executive models tasks simplistically by maintaining start and end times, and en-
suring that resource bounds are not violated. It has no knowledge of the temporal
or other constraints on tasks that are modeled in the planner, and thus is unable
to react in any meaningful fashion to unexpected situations. The other disadvan-
tage of this approach is that the executive and planner may not operate in parallel.
Since they are running in the same thread, they must perform computation in an in-
terleaved fashion. As a result, if plan repair is less efficient than expected, the exec-
utive’s next cycle will be delayed, potentially postponing the arrival of useful state
updates. We have used an embedded executive throughout this work. The tight
planner-executive integration simplified our implementation, and the synchronous
nature of the embedded executive and simulator allowed the evaluation of proactive
replanning without the confounding effects of real-time execution.

The alternate executive is TDL-based (Simmons and Apfelbaum, 1998)4, and
executes in a separate thread. TDL allows this executive to duplicate the hierarchi-
cal task structure of the planner, as well as explicitly include temporal constraints
between tasks. This increases the complexity of the executive, as much domain
information must be duplicated between planner and executive. However, the ad-
ditional information allows the executive to maintain temporal constraints in the
face of execution-time anomalies. For instance, if a task is delayed, the TDL-based
executive is able to infer that the start of all tasks constrained to begin after the
delayed task should be delayed in turn. Since the embedded executive tracks only
task start and end times, with no knowledge of temporal constraints, it would be
unable to take such action, and would instead have to rely on the planner to de-
tect the delay and adjust the remainder of the schedule quickly and appropriately.
As the TDL executive is operating in a separate thread from the planner, it also is

3Some CASPER publications, such as Chien et al. (1999), refer to the executive as the Real Time
System. We shall use the term executive for consistency with the remainder of the thesis.

4TDL is an extension to the C++ language that provides mechanisms for modeling and executing
hierarchical task networks.

40

3.3. Kernel Density Estimation

able to monitor execution while the planner is repairing or optimizing the future
schedule. This increased responsiveness is offset to a degree by the need to acquire
mutexes whenever a state update is applied to the database shared by the executive
and planner. This executive has significant advantages, especially when applied to
a real-world robotic team. However, we chose to evaluate the potential of proac-
tive replanning in isolation from the vagaries of asynchronous, real-time execution,
which made the increased complexity of the TDL-based executive not worthwhile.

The standard CASPER also provides a simple, deterministic simulator in which
tasks complete in exactly the scheduled amount of time, and no failures occur.
The simulator is designed to be extended for the domain in question. We have
done so through the use of our TaskSim library, which stochastically simulates the
execution of tasks. TaskSim is based on Augmented Transition Networks (Woods,
1970), and is discussed in detail in Section 8.1.3.

3.3 Kernel Density Estimation

We use a form of kernel density estimation (KDE) (Parzen, 1962) (Silverman,
1986) to predict duration distributions. KDE is a non-parametric method related
to histograms that is used to estimate an arbitrary distribution from training data
without making a priori assumptions about the form of the underlying distribu-
tion. A histogram can be thought of as a set of unit-height blocks, where each
observation generates a block. The blocks are aligned with the histogram bins into
which the corresponding observations fall, and are stacked (summed) when multi-
ple blocks fall into a single bin. A simple kernel density estimator performs in a
similar fashion, except that each block (or kernel) is centered on the observation,
rather than on a discrete bin. Summing these blocks results in a step-wise function.
In practice, rather than using a discrete square-wave kernel, KDE often utilizes a
smoother function, such as the normal distribution. An example of this is depicted
in Fig. 3.7, where the five observations are denoted with circles. A normal kernel
(dashed lines) is centered at each observation. The kernels are summed to yield
the estimated distribution (solid line). The selection of the shape and bandwidth
of the kernel affects the resulting distribution. In the case of a normal kernel, the
bandwidth is the standard deviation of the kernel distribution. If it is too narrow,
the result will have too many modes; too wide, and the distribution will become
an undifferentiated mass. When predicting duration distributions, we use a normal
kernel, with a bandwidth appropriate to the average spacing of observations.

Denote the bandwidth as h, the kernel function as K(x, h), and let there be n
observations with values xi. The density of the distribution at a value x is then the
sum of the densities contributed by the n kernels: f(x) = 1

n

∑n
i=1K (x− xi, h),

41

3. Background

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

b
a

b
il

it
y

Value

Observations

Kernels

Estimated Distribution

Figure 3.7: A simple example of kernel density estimation. Kernels (dashed lines)
are centered at each of the five observations (plotted as ‘o’s), then the kernels are
summed to build the estimated distribution (solid line).

where in our case K(x, h) = 1
h
√

2π
exp

(
− x2

2h2

)
.

Under weak assumptions, it has been shown that no non-parametric function
approximator may converge to the underlying distribution faster than kernel density
estimation (Wasserman, 2003). This rapid convergence, combined with ease of use
and flexibility, allows the application of KDE in a wide variety of fields, from
archaeology (Beardah, 1997) to economics analysis (Estany and Losilla, 1998).

3.4 Summary

This thesis builds upon the flexible and modular ASPEN planner. ASPEN’s design
allows its natural extension to support a wide variety of domains. While we have
augmented the ASPEN core with several new capabilities, they were largely in-
tended to increase efficiency: ASPEN’s core functionality is well-suited to the task
of proactive replanning. The CASPER execution architecture supports continuous
updating of ASPEN’s resource and state timelines in response to execution-time
events. This provides the rapid state updates needed by proactive replanning. By
extending CASPER to provide state updates throughout the execution of a task,
we are able to perform live duration prediction, and accrue the resulting benefits.
Finally, our approach to duration prediction makes use of kernel density estimation
as a flexible, non-parametric function approximator. KDE’s convergence proper-
ties, ability to model arbitrary distributions, and direct use of training data make it
ideal for our domain.

42

Chapter 4

Approach

4.1 Proactive Replanning

Proactive replanning is a two stage process: first, prediction of future conflicts and
inefficiencies and, second, use of the predictions to replan and modify executing
tasks. The goal, of course, is to make modifications early enough in the task to
avoid problems or to take maximum advantage of opportunities. Any discussion of
proactive replanning divides naturally into two broad topics: prediction and replan-
ning. A discussion of prediction could include a wide variety of interesting topics,
such as: task duration, exogenous events, resource consumption, and the likeli-
hood of component failure. This thesis, however, addresses duration prediction:
the prediction of task duration, both prior to, and throughout, execution.

Similarly, a discussion of replanning gives rise to many issues, incorporating
a plethora of replanning and repair strategies and techniques. In this work, we
concentrate on the concepts of mutable teams and live task modification. Mutable
teams allow the addition or removal of agents while a task is underway. Live task
modification is the act of modifying a task that is already being executed, generally
through changing the assignment of agents to the task.

4.1.1 Live Duration Prediction

Duration prediction is the prediction of how long a task will take to complete, given
some measure of the its current state and any available knowledge about future
changes to the task, such as the scheduled arrival or departure of agents. Specifi-
cally, we predict a distribution across possible durations for the task at hand, given
the task’s current state and a corpus of training data. Predicting a distribution, in-
stead of just the mean, enables a variety of replanning and repair strategies, such
as multi-metric optimization (e.g. simultaneously minimizing makespan and the

43

4. Approach

amount of schedule repair), principled jitter management (reducing the amount of
replanning caused by small changes in predicted duration), and the most efficient
use of mutable teams (evaluating the performance of executing teams and reassign-
ing agents appropriately). We make use of a database of example execution traces
to build non-parametric estimates of the underlying duration distribution.

Throughout this document, we will distinguish between the general act of dura-
tion prediction and the more specific live duration prediction. Duration prediction
is the act of predicting a task’s remaining duration, while live duration prediction
is the use of this technique throughout a task’s execution. Live duration prediction
serves to continuously update the planner’s schedule and allows it to rapidly detect
execution anomalies.

By predicting events such as time over-runs and under-runs, the planner is able
to rework its schedule to be more efficient or value-laden, thus taking advantage of
predicted “holes” in the schedule and resolving conflicts in time to issue corrected
instructions to the executive. Live duration prediction is useful in its own right,
yielding an 11.7% greater reward in our experimental scenario, as compared with
an otherwise identical planner that only receives task execution updates when the
task completes or over-runs its scheduled time. This improvement corresponds to
45% of the gain achievable by an omniscient planner. When used as part of a larger
proactive replanning framework, duration prediction provides the information nec-
essary for live task modification to have a significant effect.

4.1.2 Mutable Teams: Required and Optional Roles

Mutable teams are those that agents may join or leave throughout the execution
of a task. This implies a degree of flexibility in the design of the executive and
the task itself. We characterize tasks as having a set of roles, each of which may
require a certain number of agents and may make use of a number of additional
optional agents. We define a role as having a number of slots, some required, and
some optional. All required role slots must be filled for the task to proceed, while
optional slots are not necessary, but may improve the task’s speed, efficiency, or
reliability. Thus, each role has a lower bound on the number of agents that must
fill it for the task to proceed and an upper bound on the number that may usefully
contribute to the task. For conciseness, we will refer to the set of roles that include
optional slots as optional roles, and the set of roles that contain required slots as
required roles. A role may be in both sets simultaneously, if its upper and lower
bounds are different and are both greater than zero.

For instance, it may be possible to transport a heavy component from a lan-
der to the worksite with only one agent in the transporter role. However, one
or two more transporter agents may be used to distribute the load, increase the

44

4.1. Proactive Replanning

team’s speed, and reduce the likelihood that the team will become mired in sand.
In addition, if a robot is available to act in the scout role, the team’s route may
be improved, increasing the probability of avoiding terrain related problems. In
this example, the transporter role has bounds of [1, 3]: at least one transporter slot
must be filled, while up to three agents may be of use. The scout role is purely
optional, with bounds of [0, 1]: no scouts are required, but one may be utilized if it
is available.

In our formulation of mutable teams, all required role slots must be filled
throughout the execution of a task, although agents may hand off a required role
slot in mid-task, as long as it is continuously filled. Optional role slots may be filled
for any fraction of the task’s duration, and also may be handed off between agents.
In general, filling optional role slots reduces the likelihood of failure, increases the
team’s rate of progress, or reduces the impact of any failures. For conciseness, we
refer to a schedule of agent arrivals and departures from a team as a team profile; a
specific arrival or departure is termed a team change.

When used with immutable teams, optional roles allow the proactive replanner
to coarsely trade resources (the number of assigned agents) for reduced task du-
ration and/or increased task reliability, increasing the planner’s flexibility1. This
flexibility is further enhanced when mutable teams are incorporated. They allow
the trade-offs of resources against duration or reliability to be much finer-grained,
since agents may be assigned to optional roles for only a portion of a task. Live
task modification further leverages optional roles by allowing the planner to shift
resources assigned to tasks already underway in response to the realities of execu-
tion by taking actions such as balancing the schedule or adding assistive resources
to teams in trouble.

The planner may make use of these capabilities in a variety of ways. The load-
balancing characteristics of mutable teams allow the planner to utilize idle agents
in supporting roles to speed the execution of critical tasks. Mutable teams also
provide additional tools to the planner when resolving scheduling conflicts: it may
be possible to resolve an agent oversubscription conflict by removing an optional
agent from the team, while adding optional agents may reduce the task’s predicted
duration sufficiently to avoid a conflict entirely.

As with live duration prediction, mutable teams are useful when utilized in iso-
lation. Initial schedules constructed with mutable teams for our evaluation scenario
were on average 5.65% (33.04 minutes) shorter than those built with immutable
teams, a statistically significant difference. Mutable teams provide additional ben-
efits when used within the overall proactive replanning framework. For example,
when live duration prediction and live task modification are both available, it is

1This is somewhat similar to the resource smoothing process used in project management.

45

4. Approach

possible for the planner to identify a team that is operating inefficiently and com-
pensate by transferring additional agents to fill vacant optional roles.

4.1.3 Live Task Modification

We define live task modification as the ability to make changes to an already exe-
cuting task. In particular, this thesis addresses the ability to adjust the team profile
of an executing task by adjusting the arrival and departure times of assigned agents,
as well as assigning new agents to an ongoing task or removing currently assigned
agents. This implies a much tighter integration between the planner and executive
than is common in most planning and execution systems. In such systems, once a
task has been committed2, it is out of the control of the planner, which is restricted
to adjusting the uncommitted tasks on the schedule in response to any reported
execution anomalies. In most existing systems, the loose connection between ex-
ecutive and planner yields only a minimal flow of information. Because this does
not allow the planner to perform any sort of duration prediction, its ability to adjust
is further limited.

In contrast, this work emphasizes a close relationship between planner and ex-
ecutive, with the executive providing frequent state updates to the planner and the
planner adjusting the team profiles of executing tasks in response to the realities of
execution. Live task modification requires additional flexibility of the executive,
above and beyond that required by mutable teams. If only mutable teams are uti-
lized, the executive is provided a fixed team profile that it may depend on, subject
to potential delays of arriving agents due to execution problems with other tasks.
The executive may utilize a fixed team profile in a variety of ways. For instance,
if a transport team has become mired in the sand, the executive may forego a po-
tentially damaging recovery maneuver if it knows an agent arriving shortly will
enable a safer method. The addition of live task modification requires the execu-
tive to accept adjustments to the team profile on the fly. Needless to say, live task
modification as formulated here is of little use in the absence of mutable teams.

While live task modification is meaningless with immutable teams, it is able to
utilize both live duration prediction and mutable teams to improve the execution
of a schedule when used as part of a comprehensive proactive replanning strategy.
We have found that live task modification reduces the makespan of an executed
schedule by a statistically significant 6.5% when added to a system already using
live duration prediction and mutable teams.

2Following the conventions of ASPEN and CASPER, we refer to a task that has begun execution
as being committed to the executive by the planner.

46

4.2. Requirements for Proactive Replanning

4.2 Requirements for Proactive Replanning

Implementing proactive replanning requires a number of capabilities in the plan-
ner and executive, as well as a richer interaction between them. The planner must
be able to represent duration distributions, as well as complex cooperative tasks
and the weave of agents joining and leaving them. The executive must support
the addition and removal of agents throughout the execution of a task, a capabil-
ity not normally available. Most importantly, proactive replanning necessitates a
much closer relationship between the planner and executive than is normally pro-
vided: the executive must provide the planner with frequent state updates, while
accepting changes to the team profiles of executing tasks. While proactive re-
planning requires a more tightly integrated and more complex system than other
approaches, the marked improvements in the executed schedules make the effort
well worthwhile.

4.2.1 Planner

The planner must support durative actions, temporal constraints, and be able to
quickly replan or repair a plan in response to feedback from the executive. To make
full use of the opportunities provided by live duration prediction, it must be pos-
sible either to represent task durations as distributions, or to be able to cache pre-
dicted distributions to allow the repair or replanning mechanisms to utilize them.
While it is more elegant to directly represent task duration distributions, it is of-
ten computationally inefficient to do so. Mutable teams require that the planner
be able to encode the duration of a particular agent’s participation in a task: it is
insufficient to represent solely which agents are participating in a task. In addition,
the planner must be able to encode the existence of distinct roles within a task, as
well as lower- and upper-bound constraints on the number of agents assigned to
each role. It must also be possible to assign multiple agents to the same role slot at
disjoint times. Finally, live task modification requires the planner to reason about
executing tasks and rapidly repair and optimize the schedule in response to events
occurring during execution.

4.2.2 Executive

The primary requirement that proactive replanning places on the executive is flex-
ibility. The executive must be able to support the addition and removal of agents
from a team during the performance of a task, as well as the dynamic adjustment of
the team profile. This requires careful design of the executive and the tasks them-
selves: it must be possible to add, remove, or exchange agents in any role at any

47

4. Approach

time. Needless to say, not all tasks will be amenable to this approach: such tasks
are encoded as having being immutable. Other tasks may be amenable to team
changes only at discrete points during their execution. We have not explored the
implications of such tasks; how to effectively encode and reason about such tasks
remains an open area of research. While we envision a distributed set of executives
coordinating with a centralized planner, this thesis explored proactive replanning
in a centralized, simulated fashion: there may be unexplored opportunities and dif-
ficulties that arise from a distributed executive. Finally, the executive must be able
to track the state of executing tasks and frequently provide updates to the planner,
in order to support various aspects of proactive replanning.

4.3 Domain Complexity

The three components of proactive replanning are evaluated throughout this thesis
in two distinct domains. Both domains involve eight distinct types of tasks, each
with a unique structure with respect to execution, potential failures, and the effects
of filling optional roles. We model tasks at a mid-range level of detail: stochastic
elements of execution and nonterminal failures are encoded, but low-level aspects
of the agents are not considered. For example, while we model the effect of the
weight of a large cable spool on the transporting team, we do not explicitly consider
the likelihood that the back-left wheel of agent 2 may become packed with sand.
We also do not model terminal failures, nor agent breakdowns: given sufficient
assigned agents, tasks will always complete, although the time needed may be
arbitrarily long.

The Lay Cable task is representative of the complexity of the tasks in our do-
mains, and is performed in the experiments of Chapters 6 and 8. The objective
of Lay Cable is to deploy a data cable between the communications array and the
habitat. It has a single Cabler role, with agent bounds of [1, 3]. The weight of the
cable slows the team, although its impact decreases as the task nears completion
and the weight of the remaining cable falls. One type of nonterminal failure is
modeled: if the cable becomes caught on the terrain, the team must stop until the
cable is untangled. Additional agents reduce the effect of the cable weight, as well
as drastically decreasing the time needed to detangle the cable, resulting in modest
reductions in task duration in the nominal case and significant time savings when
failures occur.

There are three sources of uncertainty in Lay Cable: the progress made towards
the habitat during nominal operation includes a Gaussian noise component, there
is a 0.75% likelihood that the cable will become tangled during each step of execu-
tion, and the delay induced by a tangled cable is drawn from a uniform distribution.

48

4.3. Domain Complexity

(a) Start of task, one agent. (b) After failure, one agent.

(c) Start of task, two agents. (d) After failure, two agents.

(e) Start of task, three agents. (f) After failure, three agents.

Figure 4.1: The filling of at least one optional role in the Lay Cable task nearly
eliminates the effects of failures, which significantly increase the task’s duration
when only one agent is available. Each row of images corresponds to a different
number of agents, the left column depicts the estimated duration distribution at the
start of the task, and the right column plots the duration distributions if a failure
occurs immediately following the start of execution. See Appendix B.2 (Listing
B.14) for structural details of the task.

49

4. Approach

When no failures occur, the expected duration of the task is a normal distribution,
with optional agents slightly reducing the mean (left-most mode of Fig. 4.1(a);
Figs. 4.1(c) and 4.1(e)). The uncertainty in this nominal case is a result of the
stochasticity of the progress made during each timestep.

When operating with a single agent, the impact of a failure is significant, as
can be seen in Figs. 4.1(a) and 4.1(b). These figures depict the estimated dura-
tion distribution for a Lay Cable task prior to and immediately after a failure has
occurred. Each mode of the distribution corresponds to a number of failures that
may occur during the course of the task. As can be seen from Fig. 4.1(a), we have
observed up to three failures in our training data. When at least one optional agent
is available (Figs. 4.1(d) and 4.1(f)), the impact of the failure is greatly reduced.

By modeling tasks that incorporate significant uncertainty and multi-modal du-
ration distributions, we are able to explore a number of the complexities inherent
in real-world systems while retaining the ability to collect a large quantity of data
through simulation.

4.4 Summary

Proactive replanning is the act of predicting future problems or opportunities and
rapidly replanning to ameliorate or take advantage of them. This thesis addresses
three aspects of proactive replanning: (live) duration prediction, mutable teams,
and live task modification. Each places different requirements on the planner and
executive, which must be much more tightly integrated than in other planning and
execution systems. A continuous flow of information from the executive to the
planner drives rapid replanning and schedule repair. Each aspect of proactive re-
planning is able to leverage capabilities provided by the others to form a replanning
system that is able to fluidly react to the realities of execution by shifting resources
on the fly to address identified inefficiencies and opportunities. While each com-
ponent is useful to a varying degree in isolation, when used together in a unified
proactive replanning framework, they form a system significantly more capable
than the sum of its parts.

50

Chapter 5

Live Duration Prediction

5.1 Overview

When working with others, humans often exchange information about their progress
on the tasks at hand and whether they expect to complete their work on time. This
allows each individual to adapt his schedule to make the best use of his time. For
instance, the foreknowledge that a group meeting will be delayed by an hour be-
cause the team leader is caught in traffic allows everyone to take on an appropriate
task during the now-free hour. Many planning and execution systems, however, do
not predict how long executing tasks will take to complete. Instead, they assume
each task will take as long as it was scheduled for and react only when tasks com-
plete early or over-run their scheduled times, resulting in suboptimal execution.

Proactive replanning encompasses the prediction of problems, or opportuni-
ties, such as these, and the adaptation of the schedule to avoid, or take advantage
of, them before they occur. This allows the proactive replanner to modify its sched-
ule early enough to accommodate the realities of execution: by predicting the team
leader’s late arrival from his current location and the state of the roads, a proactive
replanner would schedule additional tasks into the now-empty hour for the remain-
der of the team, and move tasks aside to accommodate the delayed meeting. Live
duration prediction is a vital element of proactive replanning, allowing the planner
to foresee problems and opportunities far enough in advance to allow appropriate
action to be taken. Throughout this chapter, we will discuss duration prediction
and live duration prediction. The former is the construction of an estimate of a
task’s remaining run time, given a measurement of its current state, while the latter
consists of repeatedly constructing such estimates throughout a task’s execution.

Rather than building a single estimate of the remaining duration, we estimate
a distribution across the possible task durations. Predicting a duration distribution

51

5. Live Duration Prediction

allows the planner to engage in several new strategies that are unattainable if we
simply compute a scalar duration, such as multi-metric optimization, reasoning
about deadlines, the efficient use of mutable teams, and prediction jitter compen-
sation.

We need training data to predict the duration distribution of a task, since most
realistic tasks involve stochasticity that cannot be accurately modelled a priori.
This training data is necessarily relatively sparse: the state space of tasks usually
involves several continuous dimensions, making it extremely difficult to collect
a dense set of data outside of simulation. This necessitates the use of function
approximation techniques to estimate the duration distribution. We have developed
a kernel density estimation-based approach to duration prediction that enables the
estimation of duration distributions given sparse training data.

We have evaluated our approach using the ASPEN planner (Chien et al., 2000b)
and a stochastic execution simulator in a variety of ways. Section 5.7.1 discusses
the accuracy of our prediction method as a function of the amount of training data.
Section 5.7.2 experimentally evaluates the effects of adding live duration prediction
to a planning and execution system. Our experimental results indicate that the sole
use of live duration prediction increases the total reward over the baseline by a
statistically significant degree. The increase amounts to 45.0% of the possible
improvement, as compared with an omniscient planner.

5.2 Applicability

Live duration prediction allows the planner to recognize future scheduling prob-
lems and opportunities in time to address, or take advantage of, them. For instance,
if a task is predicted to over-run, it will delay other tasks, potentially creating op-
portunities to insert tasks into the predicted window of now-idle time. Without
duration prediction, the planner would miss such opportunities. In addition, pre-
dicting future events provides the planner with a longer time window in which to
repair or optimize the plan before execution reaches the problem point. This re-
duces the likelihood that execution must be paused to allow the planner to resolve
scheduling difficulties, and increases overall efficiency.

Live duration prediction allows the prediction of two classes of execution anoma-
lies: under-runs and over-runs.

5.2.1 Under-runs

When a task is predicted to under-run, setup actions for any subsequent tasks may
be started early, decreasing or eliminating dead time between tasks. Fig. 5.1 de-

52

5.2. Applicability

Figure 5.1: Duration prediction allows the planner to start setup tasks early when
a preceding task is predicted to under-run.

picts a canonical example of an under-running task. Here, agent 1 performs the
single-agent task A, after which agents 1 and 2 are scheduled to execute the multi-
agent task B. The BPrep task is a setup task for task B, and must be performed
immediately prior to B. The initial schedule is depicted in Fig. 5.1(a).

If task A completes early (Fig. 5.1(b)), BPrep and B may in turn be started
early, reducing the overall makespan. If the planner does not predict this early
completion, the only optimization available is to start BPrep immediately upon
A’s (early) completion (Fig. 5.1(c)). However, this is inefficient, as BPrep may be
executed in parallel with A. If the planner were able to predict A’s true completion
time prior to point N, it would be able to start BPrep even earlier, realizing a further
reduction in makespan. Ideally, the prediction would be made prior to point M,
allowing B to be scheduled immediately after A, and BPrep to be executed entirely
in parallel with task A (Fig. 5.1(d)). By providing the planner with forewarning of
under-runs such as this, duration prediction enables the execution of more efficient
schedules.

Note that since the planner is relying on a prediction, it is possible that A will
under-run by less than the expected amount, delaying B and opening a gap between
BPrep and B, if BPrep is started too early. The planner may leverage the duration
distribution to minimize the likelihood of such an occurrence. For example, it
may choose to use a duration for task A corresponding to a point further along its
duration distribution. By setting A’s duration such that there is, for instance, a 90%
probability that A will complete at or before its scheduled end time, the planner
ensures that there is only a 10% chance of the BPrep-B constraint being violated.

5.2.2 Over-runs

When an over-run is predicted, agents participating in now-delayed multi-agent
tasks are able to fill the window with useful work, rather than idling until the slow

53

5. Live Duration Prediction

Figure 5.2: Predicting the remaining duration of executing tasks allows the planner
to make use of opportunities presented by task over-runs.

task completes. If prediction were unavailable, there would be no way to know
whether the over-running task would complete in the next second or in half an
hour, and agents committed to the delayed multi-agent tasks would stand idle until
the slow task completed, unable to perform any useful work in the meantime.

Fig. 5.2 depicts a canonical example of an over-running task. In the initial
schedule (Fig. 5.2(a)), agents 1 and 2 perform individual tasks (A and B) prior to
a group task (C). Suppose that task A over-runs, as presented in Fig. 5.2(b), with
the over-run occurring at point Y. If duration prediction is not being performed, the
planner will not realize in time that there is space to execute task D earlier than
planned. However, if the planner is able to predict the over-run by point X, agent 2
will be able to execute task D earlier (Fig. 5.2(c)). This both reduces the makespan
of this segment of the schedule and provides additional time for other tasks to be
scheduled later on.

5.3 Use of Distributions

It may initially appear that the prediction of a distribution across duration, rather
than a scalar estimate, provides little additional benefit. However, a duration dis-
tribution encodes significantly more useful information about the task in question
that may be utilized in a number of ways, such as multi-metric optimization, rea-

54

5.3. Use of Distributions

Figure 5.3: Reducing the available time for two tasks by T has different effects
on the likelihood that each will finish within the reduced interval. This can be
leveraged when simultaneously optimizing schedule makespan and the likelihood
of tasks over-running their allotted time.

soning about deadlines, the efficient use of mutable teams, and prediction jitter
compensation.

Duration distributions make certain forms of multi-metric optimization possi-
ble. Because the form of the duration distribution may vary greatly between tasks,
reducing the time allocated to two tasks by the same amount will have different
effects on the likelihood that each task will overrun its new scheduled time. For
example, the duration distributions for two tasks are plotted in Fig. 5.3. Reducing
the scheduled duration of them each by T has differing effects on the likelihood
that they will complete within the scheduled time. While each initially has a 90%
chance of doing so, the steeper form of task 1’s distribution results in a 30% drop in
the probability of timely completion, while task 2 only loses 10%. By maintaining
duration distributions, the planner is able to reason in a principled fashion about
the relationship between time and the likelihood of timely completion, allowing it
to balance that likelihood against other metrics, such as makespan or total reward.

Predicting a distribution also increases the planner’s ability to reason about
deadlines. The form of duration distributions varies significantly by task, but is
often multi-modal, with each mode reflecting a different number of failures (and
recoveries) that occur during execution. The differentiation between modes will
increase as the delay induced by each failure increases, leading to significant sep-
aration between peaks in the duration distribution. For instance, consider a task
with a hard deadline, such as that diagrammed in Fig. 5.4(a). Assume that the
planner has one additional agent available, and can use it to fill one of two optional
roles. One reduces the delay associated with a failure (Fig. 5.4(b)) while the other
increases the team’s rate of progress (Figure 5.4(c)). As we can see, it is possible
for the two options to result in identical means, while only one provides any chance
of meeting the deadline. If only scalar predictions of duration were calculated, it
would be impossible for the planner to distinguish between the relative usefulness

55

5. Live Duration Prediction

Figure 5.4: An illustration of the advantages of modeling multi-modal durations.
(a) is the current team’s duration distribution. The team has two unfilled optional
roles: one reduces the effect of failures (b), and the other increases the rate of
progress when operating normally (c). Note that the means of (b) and (c) are iden-
tical, but only (c) provides a non-zero probability of meeting the deadline. This
distinction cannot be made using only the overall mean or a unimodal model of
duration.

of the two roles.
The prediction of distributions is also useful in the context of mutable teams,

which enable the transferring of agents between teams while tasks are executing.
To realize the full benefits of such a transfer, we must be able to predict its ef-
fects. Since a physical agent cannot be moved instantaneously, there will be some
uncertainty as to when it will join the receiving team, affecting the utility of the
transfer. To evaluate the effect of a proposed live task modification in a principled
manner, we must begin with distributions of the arrival time and the duration of
the receiving task. Scalar estimates provide insufficient information to accurately
reason about the utility of a live task modification. For instance, with a scalar du-
ration estimate, it is impossible to predict the likelihood that the transferred agent
will arrive in time to be useful.

Finally, duration distributions may be leveraged to overcome prediction jitter.
The planner we are utilizing (ASPEN (Chien et al., 2000b)) schedules tasks with
fixed durations. Since it was infeasible to extend ASPEN to reason explicitly about

56

5.4. Prediction Method

duration distributions everywhere, we use the mean of the distribution, while main-
taining the distribution itself to allow our heuristics to make use of it. Because the
mean is used, and the training data is drawn from a stochastic process, the pre-
dicted duration of executing tasks on ASPEN’s schedule will fluctuate (“jitter”) as
execution proceeds. This may result in superfluous conflicts with other tasks that
would require significant time to repair. To ameliorate this problem, we update the
predicted duration on ASPEN’s schedule only when the prediction varies from the
previous estimate by at least the standard deviation of the duration distribution.

5.4 Prediction Method

5.4.1 Kernel Density Estimation

We use a form of kernel density estimation (KDE) (Silverman, 1986) to predict du-
ration distributions. As discussed in Section 3.3, KDE is a non-parametric method
related to histograms that is used to estimate an arbitrary distribution from training
data without making a priori assumptions about the form of the underlying dis-
tribution. By centering a kernel function, such as a normal distribution, at each
observation, then summing the kernels, an estimate of the underlying distribution
may be easily constructed. The sole parameter to KDE is the bandwidth of the
kernel distributions, which controls the width of each kernel. For the normal dis-
tributions we utilize, the bandwidth is the standard deviation of the distribution.

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

b
a

b
il

it
y

Value

Observations

Kernels

Estimated Distribution

Figure 5.5: A simple example of kernel density estimation. Kernels (dashed lines)
are centered at each of the five duration observations (plotted as ‘o’s), then the
kernels are summed to build the estimated distribution (solid line). This figure is
the same as Fig. 3.7.

57

5. Live Duration Prediction

Denote the bandwidth as h, the kernel function as K(x, h), and let there be
n observations with duration values xi. The density of the distribution at a du-
ration x is then the sum of the density contributed by the n kernels: f(x) =
1
n

∑n
i=1K (x− xi, h), where in our case K(x, h) = 1

h
√

2π
exp

(
− x2

2h2

)
and h =

2.5.

5.4.2 Weighted Kernel Density Estimation

We use a weighted form of KDE in order to represent the belief that observa-
tions from points near the task’s current state are more relevant. In this version
of KDE, each observation is assigned a relative weight wi, where

∑n
i=1wi = 1.

The wi are calculated by examining the distance in state space between the cur-
rent state and each observation; details of these calculations are presented in the
following section. The density function is nearly identical to the canonical KDE
approach, simply replacing the uniform weighting with the observation-specific
weight: f(x) =

∑n
i=1wiK (x− xi, h). This allows the contribution of individual

observations to be adjusted; note that x in this equation is not the current task state,
but the domain of the duration distribution (e.g. a point along the duration (value)
axis in Fig. 5.5).

5.4.3 Application to Duration Prediction

Let us refer to the current state of the task whose duration is being predicted as
the query point, a tuple Q of length d, where d is the dimensionality of the task’s
state space and Qj is the current value of the jth state variable. Note that each
observation in the training data is a tuple of length d + 1, consisting of the state
and the duration observed there, and that Qd+1 is equivalent to xi above. We
must now determine the set of observations and associated weights that our KDE
will use to build the duration distribution. We do so by applying a query kernel
along each dimension of the state space (Fig. 5.6). A query kernel is a normal
distribution centered at Qj , with bandwidth hj , that is used to calculate the weight
of each observation for dimension j. The values of hj are empirically selected, and
depend upon the characteristics of the task. For instance, a continuous dimension
may have a relatively large hj , while a discrete dimension that represents a few
very different cases may use a very small hj to keep the cases segregated. If no
points lie within the query kernel, the hj are incrementally scaled up until data is
found to support the query.

The weight in dimension j of the ith observation is simply the likelihood that
oi,j (the observation’s value for dimension j) would be randomly drawn from the

58

5.4. Prediction Method

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

Q
j =

 3
0

State Dimension

W
e

ig
h

t

One−Dimensional Query Kernel

w
1

,j
 =

 0
.0

0
2
2

w
2

,j
 =

 0
.0

0
6
7

w
3

,j
 =

 0
.0

4
1
0

w
4

,j
 =

 0
.0

3
0
3

w
5

,j
 =

 0
.0

1
9
4

w
6

,j
 =

 0
.0

0
2
2

Query point

Observations

Query kernel

Figure 5.6: The query point (the current value of this dimension’s state variable)
is denoted with a ‘+’, candidate observations with ‘o’s, and the query kernel as
the solid curve. The weight of an observation i for this dimension, wi,j , is the
likelihood that the observation would be drawn randomly from the query kernel.

query kernel: wi,j = K (oi,j −Qj , hj). To limit computation, we consider obser-
vations only where wi,j > ε, where ε is reduced if the query point lies in a sparse
region of data, and the hj were scaled up.

This weight calculation is performed for all dimensions, resulting in a set
of weights wi,j for the observations. The final weight of an observation to be
used for KDE is the normalized product of these per-dimension weights: wi =Qd

j=1 wi,jPn
i=1

Qd
j=1 wi,j

. Once the per-observation weights are calculated, building the du-

ration distribution is simply a matter of performing KDE as outlined above with
the weights wi and the observed durations oi,d+1. The resulting distribution is used
by our heuristics during schedule creation and repair.

We maintain our database of observations using k-d trees in order to allow rapid
retrieval of observations near the query point.

5.4.4 Other Approaches

Our initial investigations into duration prediction focused on creating a predictor
capable of interpolating and extrapolating across areas of low density data, while
maintaining estimates of large state spaces in a spatially tractable manner. We
focused on predicting either a scalar estimate of duration or a unimodal duration
distribution. We eventually concluded that the need to model multi-modal distri-

59

5. Live Duration Prediction

butions outweighed the cost of maintaining the requisite training data sets, and
moved to KDE for its flexibility, robustness, and speed. While our scalar and uni-
modal work is not applicable to the highly multi-modal domain we have chosen
to explore, it may be of use to those working with domains in which the duration
distributions are more properly modeled with a scalar or single mode. We present
here a summary of the approaches we evaluated and the results of an experiment
comparing their accuracy and computational cost. KDE is compared with these
approaches, although a number of significant caveats apply.

Predicting a Scalar Estimate

Initially, we formulated duration prediction as a standard function approximation
problem: given a set of observations, predict the expected duration of the task
at its current state. As in our kernel density estimation approach, each observa-
tion consists of a state space vector and an observed remaining duration. The state
space is multidimensional, and may contain discrete and/or continuous dimensions.
We applied a variety of approximation methods to estimate duration from a point
in the task’s state space, given a set of training data. Among others, we evalu-
ated linear regression, thin-plate splines, regression trees, neural nets, and locally
weighted projection regression. We used each to construct an approximation of
D(x1, x2, . . . , xn)→ d, where d is a scalar estimate of the task’s remaining dura-
tion, given that the task is currently at Q = (q1, q2, . . . , qn) in the state space. We
define an observation as consisting of a state-space vector Q and an observed re-
maining duration y. For conciseness, we refer to the function being approximated
as the duration surface: the surface resulting from plotting the predicted duration
for every point in the task’s state space.

Linear regression (Chatterjee and Hadi, 1986) consists of determining the least-
squares fit to the training data by solving the linear model y = Qβ + ε, where β is
a length-n vector of parameters and ε is a length-n vector of random disturbances.
The members of ε are assumed to be drawn from a normal distribution with zero
mean. This approach fits a hyperplane to the available data, which assumes that
the duration of a task is linear as a function of its current position in state space.
While this may hold in some domains, it does not in general, and the approach suf-
fers as a result. In evaluating linear regression, we utilized MATLAB’s regress
implementation.

The thin-plate spline approach (Reinsch, 1967) simultaneously attempts to min-
imize the least-squares error and a measure of the fitted surface’s roughness for
two-dimensional state spaces. It requires a unique duration value for any given
state vector: the algorithm cannot fit a one-to-many training data set. Due to the
stochasticity of the domain, the underlying duration data is often in this form, with

60

5.4. Prediction Method

multiple training examples with different durations occurring at a given state. This
necessitates a preprocessing step to average the observed remaining duration for
any points in the state space with multiple observations. The thin-plate smoothing
spline, s, produced by this method minimizes pE(s) + (1 − p)R(s), where p is a
smoothing parameter. As p varies from 0 to 1, the resulting spline varies from a
least-squares approximation by a linear polynomial (p = 0) to a thin-plate spline
that interpolates to all available data (p = 1). The first term is the least-squares er-
ror between observed and predicted durations: E(s) =

∑
i |yi − s(Xi)|2, where i

varies across the training data set,Xi is the state space vector of a point in the train-
ing set, and yi is the corresponding duration observation. The roughness measure,
R(s), is

∫ (
|D1D1s|2 + 2|D1D2s|2 + |D2D2s|2

)
, whereDis is the partial deriva-

tive of s with respect to its ith argument, and |a|2 indicates the sum of squares of
all entries of a. Thin-plate splines are able to model a wider variety of structures
than linear regression, and to do so in a way that provides somewhat effective inter-
polation and extrapolation. However, they are restricted to two-dimensional state
spaces, cannot model the discontinuities seen in some tasks’ duration surfaces, and
may take a very long time to fit with a high p and large amounts of training data.
Thin-plate splines were evaluated using MATLAB’s tpaps implementation, al-
lowing it heuristically select p.

A regression tree (Breiman, 1993) is a binary decision tree built from a set of
training data, with each branching based on an inequality defined on the value of
one of the state dimensions. Its leaves are scalar-valued, and provide the tree’s es-
timated remaining duration. Regression trees make no assumptions about the form
of the underlying structure; may fit arbitrary functions, including those incorpo-
rating discontinuities; and are quite compact. However, they are subject to over-
fitting, and perform poorly when interpolating or extrapolating: the result is similar
to predicting the nearest neighbor from the training set, with no actual interpola-
tion or extrapolation occurring. Regression trees may be pruned post-construction
based on an error/cost metric to reduce their size and avoid, to a degree, over-
fitting. We evaluated both pruned and unpruned regression trees, using MATLAB’s
treefit and treeprune implementations.

We also trained a two-layer, twenty-neuron feed-forward neural network to
predict duration, based on a state-space vector input. The network used Radial
Basis Function hidden-layer transfer functions and a linear output transfer function
(Park and Sandberg, 1991). This network generated reasonable predictions, but
consumed a significant amount of training time. We trained and evaluated the
network using MATLAB’s newff and train routines.

Finally, Locally Weighted Projection Regression (LWPR) (Vijayakumar and
Schaal, 2000) (Vijayakumar et al., 2005) (Vijayakumar, 2001) constructs a set of
locally linear kernels, spanned by a small number of univariate regressions. LWPR

61

5. Live Duration Prediction

0

1

2

0

20

40

60

0

100

200

300

400

Remaining Distance

0 Observers

Previous Failures

M
e

a
n

 D
u

ra
ti
o

n

0

1

2

0

5

10

0

10

20

30

40

50

60

Remaining Distance

1 Observer

Previous Failures

M
e

a
n

 D
u

ra
ti
o

n

0

1

2

0

2

4

6
0

10

20

30

Remaining Distance

2 Observers

Previous Failures

M
e

a
n

 D
u

ra
ti
o

n

Figure 5.7: The duration surface of the Place Panel task. Place Panel has one
required role with bounds [1, 1] and one optional observer role, with bounds [0, 2],
and two continuous state variables.

is able to model nonlinear functions in high dimensional spaces with redundant
and irrelevant dimensions. It requires large amounts of training data, and is able to
incorporate new observations incrementally. The algorithm performed adequately.
The quality of its fit initially improved rapidly as training data was added, but took
a long time to plateau. We evaluated the MATLAB implementation available from
the author of LWPR 1.

We used the the Place Panel task to compare these six approaches to predicting
a scalar duration estimate. Place Panel has one required role with bounds [1, 1] and
one optional observer role, with bounds [0, 2]. Fig. 5.7 depicts the duration surface
of the task. The smoothness of the duration surface varies with the number of
observers, from linear (Fig. 5.7, right) to highly nonlinear (Fig. 5.7, left).

We collected 1000 example executions (traces) of Place Panel, totaling ap-
proximately 17,500 observations. Each approximation approach was then used to
build a predicted duration surface with the first 10 traces. The resulting fits were
compared with the ground truth (Fig. 5.7), and the point-wise mean squared error
was calculated across the entire state space. This procedure was repeated, incre-
mentally adding training data in sets of 10 traces. Table 5.1 presents a summary
of the experiment. While no method was able to fit exactly the underlying sur-
face, this is to be expected, given the nature of the 0-observer data. In the limit,
thin-plate splines were able to provide the best fit, although since the algorithm
cannot fit spaces with more than two dimensions, it was applied to each value of
observers independently. LWPR learned quickly (Table 5.1, second column), and
nearly matched the performance of thin-plate splines, but took somewhat longer

1Available at http://www.ipab.informatics.ed.ac.uk/slmc/software/lwpr/index.html, as of Fall
2008.

62

5.4. Prediction Method

for its fit to stop improving (Table 5.1, fourth column).
Predicting a duration surface is insufficiently expressive for the domains in

which we have explored proactive replanning, as knowledge about the distribution
across duration proves to be valuable when making scheduling decisions. However,
in a domain where a scalar estimate is sufficient, we recommend the use of LWPR.
It is quite flexible, able to learn quickly, and able to interpolate and extrapolate be-
tween and beyond the available training data. Its final estimate was slightly less ac-
curate than thin-plate splines; however, LWPR is not restricted to two-dimensional
spaces. LWPR is also the slowest of the algorithms when queried: 24 thin-plate
spline queries could be performed in the time needed for a single LWPR query.

We also evaluated kernel density estimation (KDE) in the same fashion, to
provide an approximate comparison between the duration surface approaches and
our final solution. We examined the means of the estimated duration distributions,
in order to provide data in the same form as the original experiment. These results
are reported in the final row of Table 5.1. However, a number of significant caveats
apply. KDE solves a significantly different problem than the above approaches,
focusing on generating a distribution using local data, rather than estimating the
mean by fitting and extrapolating a surface. As a result, there is no learning stage:
the sixth column in Table 5.1 for KDE is instead the time needed to load the data set
and construct the necessary data structures. In addition, our KDE implementation
is in C, while the duration surface methods were evaluated in Matlab. As a result,
no strong conclusions may be drawn by comparing the KDE timing data to the
remainder of the table. These results are provided solely to provide a degree of
context.

Predicting a Parameterized Distribution

We also evaluated the possibility of fitting a parameterized distribution, such as the
gamma distribution, to the training data. Specifically, we were interested in the
possibility of fitting a set of surfaces, with each surface’s domain being the task’s
state space and the range being a different distribution parameter. By discretizing
the state space, then fitting individual distributions to the training data in each bin,
we were able to transform the training data into a mapping from the task’s state
space to the parameters of the distribution in question. In theory, we then would
have been able to apply one of the methods discussed in the previous section to
fit a surface to each parameter, providing a compact representation able to gener-
ate duration distributions while interpolating across gaps in the training data. In
practice, this proved problematic. Deviations in the parameters induced by the fit-
ting procedures frequently combined to result in estimated distributions that varied
significantly from the initial binned fits. We investigated several approaches, in-

63

5. Live Duration Prediction
Table

5.1:
A

com
parison

of
the

ability
of

various
fitting

algorithm
s

to
produce

a
scalar

duration
prediction

for
the

P
lace

Paneltask,given
a

num
beroftraining

traces
varying

from
10

to
the

fulldatasetof1000
(approxim

ately
17,500

data
points).

A
lgorithm

M
ean

Squared
E

rror
A

fter
333

Training
Traces

M
inim

um
M

ean
Squared

E
rror

Tracesto
Plateau

L
earning
Style

Tim
e

to
L

earn
Tim

e
to

Q
uery

L
inearR

egression
5283.87

5501.02
300

batch
0.015s

5e-7s

T
hin-Plate

Spline
3620.13

247.55
650

batch
0.2s

5e-5s

R
egression

Tree
3591.57

331.50
650

batch
0.3s

1.5e-4s

Pruned
R

egression
Tree

3822.83
1369.10

650
batch

4.0s
7.5e-6s

N
euralN

et
3570.16

369.94
650

batch
10.0s

1.3e-4s

L
ocally

W
eighted

Projection
R

egression
2509.08

308.90
800

increm
ental

2.5s
1.2e-3s

K
ernelD

ensity
E

stim
ation

a
7432.50

10.77
500

increm
ental

0.44s
3.3e-4s

a
T

he
K

D
E

results
differfrom

the
duration

surface
approaches

in
a

num
berofw

ays:the
im

plem
entation

is
in

C
,instead

ofM
atlab;

there
is

no
learning

step
(“Tim

e
to

L
earn”

is
the

tim
e

to
load

the
1000-trace

data
setand

constructthe
associated

data
structures);

and
K

D
E

does
notfitsurfaces,leading

to
m

uch
tighterlocalfits,butless

ability
to

extrapolate
beyond

the
training

data.T
his

is
the

cause
ofK

D
E

’s
high

initialerrorand
very

low
erroronce

sufficientdata
becom

es
available.

64

5.5. Planner Integration

cluding fitting the parameters independently and fitting them sequentially, using
the prior fits to inform the latter, but were unable to produce satisfactory results.
We abandoned this line of investigation when we determined that the underlying
distributions were largely multi-modal, requiring a non-parametric function ap-
proximator. Before doing so, we evaluated the gamma, log-normal, normal, and
Weibull distributions. All were able to form a reasonable approximation to a few
unimodal example tasks, but clearly none can fit multi-modal distributions.

5.5 Planner Integration

We have integrated duration prediction with the repair-based ASPEN planner (Chien
et al., 2000b) and CASPER executive (Chien et al., 2000a). Although ASPEN lacks
explicit multi-agent support, its capabilities are a good fit to the needs of duration
prediction during execution.

We have tightened the integration between planner and executive by providing
a conduit for state updates to flow to the planner at every timestep. As the updates
arrive, new duration predictions are triggered via ASPEN’s Parameter Constraint
Network (Fig. 5.8). If the mean of the resulting distribution differs from the dura-
tion of the task on the schedule by more than the standard deviation of the previous
predicted distribution, ASPEN’s schedule is updated. By delaying schedule up-
dates, we eliminate much of the jitter that has affected our proactive replanning
work in the past. We define jitter as small changes in the predicted duration dis-
tribution over time, resulting from the imprecise nature of training data, which in
turn is due to stochasticity of the underlying task. Jitter is a problem because it
may trigger unnecessary repair and replanning operations. By delaying the sched-
ule update until the new prediction appears to be significantly different from the
old, we eliminate much of the jitter, while retaining the ability to detect and react
to significant changes in the predicted duration.

Once a schedule update occurs, ASPEN’s usual mechanisms are able to repair
any resulting conflicts or take advantage of optimization opportunities that have
become apparent.

5.6 Predicting Resource Usage

While not the focus of this thesis, it is relatively straightforward to extend our
duration prediction approach to predict resource usage instead. Rather than storing
observations of task duration in the training data, instead observe the amount of
a resource used during the task (e.g. 10 watt-hours of battery, 2.1 megabytes of
memory, etc.). If the desired result is a distribution across the amount of resource

65

5. Live Duration Prediction

Figure 5.8: The Transport task’s fragment of the Parameter Constraint Network
(PCN). State variables are updated by the executive, and trigger propagations
through the PCN, which result in the recalculation of duration predictions. When
duration is updated, the task’s duration on the schedule is changed. Here, the
current time (curTime) is used to calculate elapsed time, which is added to the
predicted remaining duration. The task state variables distanceRemaining, num-
Transporters, and glitchRecovery are updated by the executive: when they change,
a new duration prediction is triggered via pred dur.

that will be consumed during the remainder of the task, no modification to our
method above is needed.

However, it also should be straightforward to extract a profile of the expected
usage across time. Our data set maintains the links between successively observed
points, allowing the traversal of individual training runs through the data set. If the
stored resource data is instead interpreted as a delta usage over the next timestep,
by taking the difference of consecutive observations, our prediction method yields
a distribution across resource consumption in the next timestep. The points con-
tributing to that distribution can then be projected forward in time to incorporate
the future arrival of additional agents. A distribution can then be built at each step
along this projection, yielding a stack of distributions across time. Depending on
the need, the stack could either be used directly, or a resource usage profile could
be extracted. For instance, if the mean and standard deviation of each distribu-
tion was calculated, plotting the cumulative sum of means would yield a plot of
expected resource usage against time.

66

5.7. Experimental Results

While the application of our prediction approach to the prediction of resource
profiles appears straightforward, experimental exploration of this concept is outside
the scope of this thesis.

5.7 Experimental Results

We have performed three experiments to evaluate the efficacy of live duration pre-
diction. In the first, we examine how varying amounts of training data affect the
accuracy of our duration predictions. We then, fix the size of the training corpus
and compare a live duration prediction-enabled planning system with a baseline
and an omniscient planner. The addition of live duration prediction yields 45%
of the improvement achieved by the omniscient planner. Finally, we evaluate how
live duration prediction affects the execution of a schedule, while again varying the
amount of training data provided.

In these experiments, task execution is stochastically modeled using TaskSim,
a representation similar to Augmented Transition Networks (Woods, 1970) and
discussed in detail in Section 8.1.3. The models introduce a degree of uncertainty
akin to that found in real-world robotic teams, and may be arbitrarily complex. In
general, TaskSim models incorporate mid- to high-level task state, including non-
terminal failures, and report task-level state to the CASPER executive. While indi-
vidual components of agents (such as manipulators or sensors) are not simulated,
events such as an agent becoming stuck in the sand and environmental conditions
such as the slope of the terrain are represented. Fig. 5.9 depicts the model used
for the Move task. Execution begins in the Moving state, and one state transition is
made per time unit. During normal conditions, the distance traveled is incremented
by a value drawn from a normal distribution, and there is a 1% chance of the agent
becoming stuck during any given time step. Once the agent becomes stuck, it must
recover before further progress can be made towards the goal. Models such as this
are used to generate state traces during execution. Prior to execution, the mod-
els are used in the same fashion to generate the state traces that form the training
database needed to predict duration distributions.

5.7.1 Accuracy of Prediction

Given an infinite amount of training data, our kernel density estimation approach
will produce precisely the “true” duration distribution. However, training data is
often difficult and expensive to collect. We have evaluated the accuracy of our
duration prediction method (Section 5.4) as a function of the amount of available
training data.

67

5. Live Duration Prediction

Figure 5.9: The stochastic simulation model for the Move task. This is used to
simulate execution, and provides the state that is used for duration prediction dur-
ing execution. In addition, the state traces generated are used offline to train the
KDE-based predictor. Note that we assume a similar distribution of terrain during
all moves, as the likelihood of becoming stuck during a given timestep is constant.
The only modelled difference between moving from location A to B and A to C is
the duration of the move, and hence the expected number of recoveries that must
be performed.

Experimental Conditions

In order to characterize the accuracy of duration prediction, we built a corpus of
data for each of eight tasks, consisting of 512 runs from the initial state. This
yielded between 11,021 and 177,795 observations per task, depending on the task’s
inherent length and stochasticity. We then created 17 sample sets for each task,
each with an ever larger portion of the corpus, beginning with 2 runs and proceed-
ing to 512 runs in increments of 32.

We built a test duration distribution from each sample set at every point in a
finely-spaced grid spanning the state space of each task, and compared them with
the corresponding distribution constructed from the 512-run reference set. This
comparison was made by computing the Kullback-Leibler (K-L) divergence (Kull-
back and Leibler, 1951) between the test and reference distributions. The diver-
gence value increases as the distributions being compared become more different,
while identical distributions have a divergence of zero.

Data and Discussion

Since a single execution run does not provide data spread evenly across the state
space, plotting the accuracy of a prediction as a function of the number of runs in
the training set is not useful. Instead, we plot the number of kernels (observations)

68

5.7. Experimental Results

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Move: Distribution Accuracy vs.

 Training Set Size

Number of Observations

K
L

 D
iv

e
rg

e
n

c
e
 o

f
P

D
F

Predictions

Least−squares exponential fit

Figure 5.10: As the number of observations used to form the duration distribution
increases, the resulting distribution becomes more accurate. The Y axis indicates
the K-L divergence from a distribution built from all available data at the relevant
query point.

used to construct a prediction against the resulting K-L divergence in Fig. 5.10,
for all test points from all sample sets for the Move task. In general, test points
from larger sample sets will have more observations, but the relationship depends
heavily on the task’s structure: a task may spend most of its time in one portion
of the state space, yielding few observations in the outlying state space, even with
large training sets. The fitted curve is the least-squares fit of y = a ∗ exp(b ∗ x)
to the available data. The exponential distribution also fits the data from the other
seven tasks, although a and b will of course vary. As can be seen from Fig. 5.10,
little utility is gained from having more than 5 data points in the vicinity of the
query point for this particular task. Ideally, 5 observations would be within the
query kernel bandwidth of every point in the state space. Given a kernel bandwidth
and knowledge of the task’s structure, this can provide guidance as to how many
training runs are useful for a particular scenario.

5.7.2 Effects of Live Duration Prediction: Maximizing Reward

We have evaluated the effectiveness of duration prediction for proactive replanning
by performing a series of experiments with CASPER and ASPEN, using TaskSim
for execution simulation. The results reported here focus on the effects of duration

69

5. Live Duration Prediction

Figure 5.11: The Lunar Outpost scenario. Numbers in parentheses denote the
number of agents needed to perform each task. Tasks during which the agent must
remain at a site are denoted with a dashed circle.

prediction alone, and do not incorporate mutable teams or live task modification.

Scenario

The scenario represents a subset of the construction of a lunar outpost, and includes
three agents, three sites, and eight types of tasks (Fig. 5.11, Table 5.2). Agents are
assumed to be homogeneous, and can participate in only one task at a time. Each
task has an associated reward, may be constrained to occur at a given site, and/or
may involve the moving of agents from one site to another. Different tasks require
different numbers of agents. In general, there are two classes of tasks: cooperative
and solo. Cooperative tasks require more than one agent, and generally have higher
rewards and durations than single-agent solo tasks.

The objective is to maximize total reward within a fixed horizon, which roughly
equates to maximizing the number of reward-laden tasks that are executed. During
execution, at every timestep ASPEN evaluates whether there are any conflicts in the
schedule. If there are, it repairs the conflicts by first right-shifting tasks. If this fails,
ASPEN’s general repair algorithm is invoked until the schedule is conflict-free.
After all conflicts have been repaired, ten iterations of optimization are performed,
with repair of any new conflicts occurring after each. This allows the planner to
repair any inefficiencies introduced by the initial repair cycle.

If there are no conflicts, ASPEN performs one iteration of a limited optimiza-
tion algorithm at each timestep. In particular, it checks for agents that are free at
the current time and have sufficient time prior to their next task to perform a solo
task with non-zero reward. If such an agent can be found, a task is heuristically
selected and scheduled for that agent.

70

5.7. Experimental Results
Ta

bl
e

5.
2:

L
un

ar
O

ut
po

st
sc

en
ar

io
ta

sk
s

an
d

re
le

va
nt

st
at

is
tic

s.

Ta
sk

R
ew

ar
d

A
ge

nt
s

N
ee

de
d

L
oc

at
io

n
St

at
e

Va
ri

ab
le

s
Pr

og
re

ss
Pe

r
Ti

m
es

te
p

D
ur

at
io

n
fr

om
St

ar
t

(µ
,σ

)

M
ov

e
0

1
St

ar
t:

A
ny

w
he

re
E

nd
:A

ny
w

he
re

D
is

ta
nc

e
m

ov
ed

:[
0,

50
]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
50

]
N

(1
,0
.2

5)
59

.1
2

(3
9.

59
)

Sk
y

O
bs

er
va

tio
n

15
1

A
ny

w
he

re
Pr

og
re

ss
:[

0,
1]

N
(0
.0

5,
0.

01
)

18
.1

6
(4

.5
0)

So
il

O
bs

er
va

tio
n

15
1

A
ny

w
he

re
Pr

og
re

ss
:[

0,
1]

N
(0
.0

25
,0
.0

1)
33

.1
1

(7
.2

1)

H
ab

ita
t

M
ai

nt
en

an
ce

30
1

H
ab

ita
t

Pr
og

re
ss

:[
0,

1]
R

ec
ov

er
y

pr
og

re
ss

:[
0,

20
]

N
(0
.0

25
,0
.0

1)
41

.6
5

(1
5.

75
)

M
at

er
ia

ls
:

L
an

de
r
→

H
ab

ita
t

30
0

3
St

ar
t:

L
an

de
r

E
nd

:H
ab

ita
t

D
is

ta
nc

e
m

ov
ed

:[
0,

50
]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
50

]
N

(0
.5
,0
.1

)
11

3.
72

(2
7.

82
)

L
ay

C
ab

le
12

0
2

St
ar

t:
H

ab
ita

t
E

nd
:C

om
m

D
is

ta
nc

e
m

ov
ed

:[
0,

50
]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
50

]
N

(0
.3
,0
.2

5)
20

5.
53

(4
5.

64
)

M
at

er
ia

ls
:

L
an

de
r
→

C
om

m
10

0
2

St
ar

t:
L

an
de

r
E

nd
:C

om
m

D
is

ta
nc

e
m

ov
ed

:[
0,

50
]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
10

0]
N

(2
,0
.2

5)
34

.0
6

(7
0.

71
)

C
om

m
Se

tu
p

50
2

C
om

m
Pr

og
re

ss
:[

0,
1]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
20

0]
N

(0
.0

5,
0.

01
)

49
.5

4
(8

3.
80

)

71

5. Live Duration Prediction

Experimental Conditions

We evaluated three experimental conditions: a baseline, an “oracle” case, and live
duration prediction. We generated 20 initial schedules, each solving the same prob-
lem, using ASPEN, which we have augmented with heuristics that address multi-
agent tasks. Duration prediction was used during the initial schedule generation
to provide the (constant) durations for scheduled tasks. We executed each of the
schedules five times under the baseline condition and fifty times under the live du-
ration prediction condition, resulting in 100 and 1000 runs, respectively. In the
oracle condition, the planner was provided with complete foreknowledge of the
executed task durations, making execution extraneous. Instead, each of the 20
schedules was stochastically optimized five times, again yielding 100 data points.

Baseline

In the baseline case, no live duration prediction is performed. Instead, when a task
finishes early, its duration on the schedule is instantly changed from the expected to
the final value. When a task over-runs, its duration is increased incrementally, until
it completes. If any conflicts are created, ASPEN’s repair algorithm is invoked,
followed by five iterations of the optimization algorithm. If no conflicts are present,
one iteration of optimization is performed per executed timestep.

Live Duration Prediction

The live duration prediction condition is identical to the baseline, except that the
durations of all currently executing tasks are updated at every timestep, as dis-
cussed in Section 5.5. When tasks are predicted to over-run or under-run, opportu-
nities arise for the optimization algorithm to schedule additional tasks.

Oracle

In the oracle condition, the planner is provided with the precise final durations of
each task, obviating any need for prediction. The specific durations were generated
by simulating the task once for each task instance. As a result, the actual task
durations were stochastic across runs, but the durations for each run were known
by the planner at plan time. Under this condition, the planner updated an initial
schedule (built using average task durations) with the actual durations, repaired
any resulting conflicts, then performed 5000 iterations of the same optimization
routines as used during execution in the other two experimental conditions. This
was done five times for each of the 20 initial schedules.

72

5.7. Experimental Results

Table 5.3: Live duration prediction experimental results.

Reward a Executed
Tasks a

Rewarded
Executed
Tasks a

Planning
Time Runs

1. Baseline
2041.73
(475.53)

122.96
(28.26)

118.18
(31.24)

20.14s
(7.79s)

100

2. Oracle
2571.10
(419.59)

131.10
(114.32)

114.32
(19.71)

66.16s
(11.18s)

100

3. Duration Prediction b 2280.17
(433.25)

153.89
(27.73)

161.80
(32.22)

27.63s
(17.57s)

1000

4. Prediction - Baseline
(i.e. PB)

238.44
(+11.7%)

30.93
(+25.2%)

43.62
(+36.9%)

7.49
(+37.2%)

—

5. Oracle - Baseline
(i.e. OB)

529.37
(+25.9%)

8.14
(+6.6%)

-3.86
(-3.3%)

46.02s
(+228.5%)

—

6. OB - PB (PB
OB)

290.93
(45.0%)

-22.79
(380.0%)

-47.48
(—)

38.53s
(16.3%)

—

a Values are the change of each metric between

the initial schedule and the schedule at the com-

pletion of execution.

b Using 32 training runs per task.

Data and Discussion

The results of our experiment are detailed in Table 5.3, where the data are reported
as mean (standard deviation) or difference (percent difference). The data is the
difference between the initial and final schedules – this removes the variation due to
differences in the initial schedules. “Executed Tasks” includes zero-reward tasks,
such as Move, while “Rewarded Executed Tasks” includes only rewarding tasks
(see Table 5.2). The reported planning time is the time needed to perform all repairs
and optimizations during the execution or construction of a schedule.

When using live duration prediction, the planner is able to schedule 25.2%
more tasks on average than the baseline and achieve a 11.7% greater total reward
(Table 5.3, row 4). Besides scheduling additional rewarding tasks, some unre-
warding tasks were replaced with rewarding ones (the increase in rewarded tasks
is greater than the increase in executed tasks).

Under the oracle condition, which represents the best that the planner could
accomplish with the provided heuristics, 6.6% more tasks were scheduled than

73

5. Live Duration Prediction

the baseline, yielding 25.9% more reward (Table 5.3, row 5). This shows that by
predicting task durations as execution proceeded, the planner was able to achieve
45.0% of the maximum possible improvement (Table 5.3, row 6). Note that under
the oracle condition significantly fewer tasks were scheduled, yet more reward was
garnered: with the provided foreknowledge, more of the long, high-reward tasks
were scheduled. In contrast, when using duration prediction, many smaller low-
reward tasks were added as small opportunities presented themselves. The specific
results will vary according to the composition of the scenario, but the gains due to
prediction are a function of the point at which over- and under-runs are predicted,
the duration of tasks available for addition, and the reward per unit time of the
available tasks.

While the average increases are promising, the data is quite noisy, as we can
see from the large standard deviations. This is due to the stochastic nature of both
execution and ASPEN’s heuristic approach to repair and optimization. In particu-
lar, note the large standard deviations in expected duration for tasks such as Comm
Setup and Materials: Lander → Comm (Table 5.2). We performed a repeated
measures ANOVA with the initial schedule as the repeated sample to compare the
baseline, duration prediction, and oracle results. There were statistically significant
differences between all combinations (at a confidence level of p = 0.0001), except
for rewarded tasks between the baseline and oracle cases. As can be seen from
Table 5.3, the number of rewarded executed tasks was very similar between these
conditions, although which tasks were executed varied significantly, as can be seen
by the difference in reward.

These improvements come at a cost, however: overall planning time increases
by 37.2% on average when using prediction (Table 5.3, row 4). This is due to
an increased number of repair and optimization attempts made possible by the
predictions, as well as the cost of prediction itself.

Effects of Varying Training Set Size

We also performed a series of simulated scenario executions while varying the
amount of available training data from 2 to 128 runs per task. A run consists of the
data points generated by a single simulated execution of the task. As can be seen
in Fig. 5.12(a), reward increases as the amount of training data increases, asymp-
toting at roughly 32 runs of training data per task. While the data points for 32
and fewer runs of training data form a smooth curve, there is significant noise as
the training set size is increased further. We do not currently have an explanation
for this change. The experiment discussed in the previous section utilized data
sets equivalent to the 32-run sample set. The prediction condition improves sig-
nificantly over the baseline as long as more than 4 training runs are available: the

74

5.8. Summary

0 50 100 150
−1000

0

1000

2000

3000

4000

Number of Runs in Training Set

D
e

lt
a

 R
e

w
a

rd

Delta Reward vs. Training Set Size

0 50 100 150
0

50

100

150

200

250

300

Number of Runs in Training Set
P

la
n

n
in

g
 T

im
e

Planning Time vs. Training Set Size

Figure 5.12: Reward achieved and planning time needed as functions of the number
of runs in the training set for each task. Each point corresponds to an execution of a
schedule, with the mean of each size of training set plotted as a square. In 5.12(a),
the average delta reward for the baseline case is denoted with a dashed line, while
the oracle condition is plotted as a dashed-dotted line.

difference between the baseline and every prediction experiment (except for the
4-run case) is statistically significant at a confidence level of 0.0001, according to
a repeated measures ANOVA.

Fig. 5.12(b) shows that planning time increases very slightly, if at all, with the
amount of training data. While we use k-d trees to quickly perform queries, pre-
diction time will always increase as the size of the training corpus increases. This
is offset by a reduction in the amount of repair needed, due to the more accurate
predictions.

5.8 Summary

Live duration prediction is the repeated prediction of a task’s remaining duration
as execution proceeds. Even when used in isolation, it is a worthwhile addition to
a planning and execution system, allowing achievement of 45% of the maximum
possible improvement, when compared with an omniscient planner. It is useful in
scenarios with scarce training data, while being able to improve its estimates as
additional data becomes available.

Live duration prediction, while useful in its own right, is also a tool that can en-
able much greater improvements in planning and execution by providing the plan-
ner with the forewarning needed to appropriately adjust its schedule. The addition
of mutable teams and live task modification provide the planner with additional
tools with which to exploit the information provided by live duration prediction.

75

5. Live Duration Prediction

76

Chapter 6

Mutable Teams

6.1 Overview

Mutable teams are teams that agents may join or leave while the execution of a
task is underway. By contrast, immutable teams are those in which any agents
involved must participate for the entire duration of the task. The use of mutable
teams approximates the ability of humans to jump into a task when others are
having trouble, then leave when the problem is resolved. For example, the foreman
on a factory floor often serves as a roving troubleshooter, lending assistance to
any workers encountering difficulties, then moving on once the problem has been
resolved. Humans excel at this type of fluid shifting between tasks: mutable teams
extend some of the same capabilities to multi-agent robotic systems.

Our formulation of mutable teams is based on the concept of roles. We repre-
sent each task as having a set of roles, each of which requires, or may make use
of, differing numbers of agents. We define a role as having a number of role slots,
some required, and some optional. All required role slots must be filled for the
task to proceed, while optional slots are not necessary, but may improve the task’s
speed, efficiency, or reliability.

For instance, a Transport task may have transporter and scout roles: agents
filling a transporter role are responsible for moving the load, while scouts serve
to actively find the best route for the transport team. It may be possible to move
the component with a single agent, but an additional 1-2 agents in the transporter
role may increase the team’s speed and decrease the likelihood of becoming mired
in treacherous terrain (the transporter role includes one required and two optional
slots). It is possible to accomplish the Transport task with no scouts whatsoever,
but if a robot is available for the scout role, it may reduce the probability of a
terrain-related mishap by actively searching for problem areas (the scout role has a

77

6. Mutable Teams

single optional slot).
When describing a role, we specify the number of agents that may fill it with

lower- and upper-bounds: the lower bound corresponds to the number of required
slots in the role, while the difference between the bounds is the number of optional
slots. For instance, the transporter role requires [1, 3] agents, while the scout role
requires [0, 1] agents.

Note that roles are applicable to mutable and immutable teams: the difference
lies in when agents may start or end their participation in a role. Immutable teams
require that agents participate in their assigned role for the duration of the task,
while mutable teams allow participating agents to come and go. With immutable
teams, the planner has the flexibility to fill optional roles or leave them vacant,
although if they are filled, a single agent must take on the entirety of a single role
slot.

When discussing mutable teams, we refer to the schedule of agent arrivals and
departures for a task as its team profile. This profile consists of a series of team
changes, each of which is the arrival or departure of an agent at a specified time.

Allowing the planner to reason about mutable teams results in additional flexi-
bility during repair or optimization of the overall schedule. For instance, idle win-
dows in an agent’s schedule may be utilized by temporarily assigning the agent to
an optional role, allowing it to leave the team in time to perform its next scheduled
task. Conflicts in a schedule due to an agent oversubscription may be resolved by
allowing the oversubscribed agent to depart earlier than scheduled. Alternatively,
additional agents may be added to a task to reduce its expected duration and either
eliminate a conflict or reduce the schedule’s makespan.

The addition of mutable teams requires extensions to our approach to duration
prediction. With mutable teams, the planner has knowledge of future changes in
the team’s state (scheduled agent arrivals and departures) that should be taken into
account when building duration distributions. We have developed two approaches
to doing so: distribution transfer functions and particle projection prediction. We
have evaluated their strengths and weaknesses experimentally, and report the re-
sults, showing that particle projection prediction is the proper choice for most con-
texts. In our experiments, agents are allowed to join or leave teams instantly, al-
though they must spend time moving between teams. In tasks such as Transport,
this is not realistic, as adding an agent to the transporter role will require the exist-
ing transporters to reposition themselves to balance the load. We propose several
approaches to estimating the effects of agent addition and removal on the team.

While mutable teams are useful in their own right, their effect is magnified
when combined with other aspects of proactive replanning, such as live duration
prediction and live task modification. For example, if two tasks are running in par-
allel, but one is progressing slower than expected, agents may be shifted from one

78

6.2. Applicability

task to the other to balance the schedule. If a team runs into trouble during execu-
tion, additional resources may be added to ameliorate the problem. In addition, if
a team is taking longer than planned, agents may depart the team prior to the com-
pletion of the task if they have other, higher priority, commitments. The interaction
of mutable teams with other elements of proactive replanning is discussed further
in Chapters 7 and 8.

We have experimentally evaluated the effects of mutable teams on the length
of the optimized schedule generated by the planner prior to execution. On aver-
age, a statistically significant reduction in overall schedule length of 5.65% (33.04
minutes) was realized. The effects of mutable teams during schedule execution are
examined in Chapter 8, where we determine that mutable teams are responsible for
approximately half of the 11.5% reduction in makespan possible with a complete
proactive replanning system.

6.2 Applicability

Mutable teams are beneficial at plan and repair time, even when used in the absence
of the other aspects of proactive replanning. However, they are most effective when
utilized in conjunction with live duration prediction and live task modification.
Mutable teams allow the planner to more effectively utilize the agents at its disposal
by avoiding many of the “holes” that often occur in multi-agent schedules. While
this discussion is framed in terms of optimizing the schedule’s makespan, the same
techniques are of use when repairing conflicts. By reducing a task’s duration or
removing conflicting agents from a task early, the planner is able to resolve many
conflicts with less schedule disruption than is otherwise possible.

The concept of mutable teams is applicable in a wide range of scenarios. If a
task may be performed by a minimal team, but could be carried out in a more ef-
ficient, reliable, or cost effective manner with additional agents, mutable teams are
applicable. Mutable teams are effective when applied to either type of multi-agent
task: tasks that may be performed in parallel or cooperative tasks. In general, tasks
that may be performed in parallel by many agents require little close interaction.
Many mapping, inspection, and foraging activities fall into this category. Mutable
teams are particularly useful in such domains because there is little cost involved
in an agent joining or departing a team: the executive remains relatively simple,
and the planner is free to shuffle agents as the scenario evolves.

In contrast, team members in cooperative tasks must closely interact to perform
the desired action, such as coordinated manipulation. Joining or leaving a coop-
erative task may be a complex or slow procedure, as the remainder of the team
may need to adjust. For instance, if a transporter agent leaves a Transport task,

79

6. Mutable Teams

Figure 6.1: Mutable teams allow agents to join critical-path tasks once they finish
their prior tasks. While the use of optional roles alone allows mild optimizations
(b), mutable teams are needed to make full use of the opportunities afforded by
optional roles (c).

the remaining transporters must shift to balance the load properly. Cooperative
tasks may also include roles that may be filled or vacated with little effect on the
remainder of the team, such as the scout role of the Transport task. These roles are
often those involving non-contact sensing, advance scouting, or distributed com-
putation. While the implementation of mutable teams for cooperative tasks may be
complex, the resulting flexible, robust, and efficient planning and execution system
makes the effort well worthwhile.

Fig. 6.1 is a canonical example of the use of mutable teams and an optional
role to minimize the schedule’s makespan. Here, two tasks must be performed:
task A requires [1, 2] agents, while task B requires a single agent. The schedule
as formulated with immutable teams and no optional roles is shown in Fig. 6.1(a).
With the addition of the optional role, a mild optimization may be performed by
delaying the start of task A so that agent 2 may participate (Fig. 6.1(b)). However,
by allowing mutable teams, agent 1 may make progress on task A while agent 2
completes task B, after which the agents join forces to rapidly complete task A
(Fig. 6.1(c)).

Fig. 6.2 depicts the inverse: by allowing agent 1 to depart the team early, taskB
may be parallelized with the final stages of task A. While this increases the overall
duration of task A, the schedule’s makespan is reduced. The same approach may
be used with live task modification to reduce the impact of an over-running task A:
agents needed for subsequent tasks on the critical path may be removed from the

80

6.2. Applicability

Figure 6.2: The use of mutable teams allows the planner to remove agents from a
task early in order to reduce the schedule’s overall makespan.

Figure 6.3: Mutable teams allow the planner to make use of otherwise idle por-
tions of an agent’s schedule. For illustrative purposes, assume tasks B and C are
constrained to occur at their scheduled times.

team earlier than scheduled in order to avoid impacting the schedule’s makespan.
Finally, the use of mutable teams allows the planner to make use of holes in

an agent’s schedule. In Fig. 6.3(a), agent 1 performs task A by itself, while agent
2 is scheduled to perform tasks B and C, with a span of idle time [T1, T2] due to
other constraints on B and C. With immutable teams, agent 2 would be unable to
perform any useful work in [T1, T2]. When mutable teams are available, such small
holes may often be utilized by temporarily filling an optional role, decreasing the
schedule’s makespan by a slight but measurable amount.

In addition to their uses at plan time, mutable teams make live task modification
possible. Live task modification is the modification of an executing task’s team
profile, and allows the planner to adjust the profiles in response to the realities of
execution. This gives the planner the ability to adjust for tasks that are operating
more or less efficiently than expected by reallocating agents. See Section 7.2 for
examples of the use of mutable teams in concert with live task modification.

81

6. Mutable Teams

6.3 Mutable Teams and the Planner

6.3.1 Required Planner Capabilities

To make effective use of mutable teams, the planner must be able to represent and
reason about them. It must be possible to represent required and optional roles,
as well as roles with both types of role slots. In addition, it must be possible to
represent team profiles: the schedule must be expressive enough to encode agents
arriving and leaving in the middle of a task. The representation must be flexible
enough to allow rapid repair if an agent arrives later than scheduled. The planner
must ensure that required role slots are filled at all times and optional roles are
not oversubscribed. Due to these requirements, it is insufficient to simply record
which agents are to be used by a particular task: instead, agent assignments must
be durative, and represented such that different agents may fill the same role slot
during non-overlapping times.

Reasoning about mutable teams is a complex problem that may be accom-
plished in a variety of ways. The degree to which the planner is able to effectively
reason about them will limit the potential gains from adding mutable teams. The
planner must enforce constraints between the mutable team task and agent assign-
ments to ensure that the agent assignments are moved along with the task when
the task is moved on the schedule, and that proper adjustments are made as the
task’s predicted duration changes. The planner should be able to efficiently locate
tasks with (partially) unfilled required role slots, and be able to reason about how
to fill them. Similarly, it should have the ability to quickly locate unfilled optional
role slots, as they often represent optimization opportunities. To make full use
of the potential of mutable teams, the planner should incorporate mutable teams
into its repair mechanisms. For instance, filling an optional role slot often reduces
the duration of a task, which may suffice to resolve a conflict with an overlapping
task. Mutable teams may be leveraged in a similar fashion during optimization.
Useful strategies include transferring agents between teams as an atomic operation
and removing an agent from a team early if it is needed on a more critical task.
See Section 8.2 for a discussion of the repair and optimization heuristics we have
developed.

Representing and reasoning about mutable teams places a significant demand
on the planner’s capabilities. However, with the correct representation, much of the
reasoning dovetails with the planner’s existing repair and optimization strategies,
allowing a straightforward extension to support mutable teams.

82

6.3. Mutable Teams and the Planner

6.3.2 Representing Mutable Teams and Roles in ASPEN

While roles may be represented in a wide variety of ways, we have chosen to
represent roles using a combination of two broad types of tasks (activities in the
ASPEN literature) and metric resource timelines. This approach, which we term
agent request timelines, allows us to reason naturally about the participation of
each agent in a task, while rapidly detecting any open required or optional role
slots.

Cooperative and Join Tasks

We represent a mutable team in ASPEN with two types of tasks: cooperative and
join. A cooperative task represents the team as a whole, and serves as the source
and sink for any temporal constraints related to the overall task. Tasks A and
B in Fig. 6.4 are cooperative tasks. A join task represents the assignment of an
agent for a period of time to a role slot of a particular task. We define a join task
type for each combination of agent, role, and cooperative task type. For example,
in Fig. 6.4(b), we define a task of type Agent1-A-Required (abbreviated Ag1-A-
Req) to represent the participation of agent 1 in the required role of a cooperative
task of type A. A separate task type is needed for each agent-role-cooperative
task triple because ASPEN does not support the parameterization of reservations
with respect to the timeline they are to be placed on. A join task must place a
reservation on the lock timeline for the agent being represented, as well as the
agent request timeline appropriate to the role and cooperative task with which it
is associated. Because the timelines on which these reservations are to be placed
cannot be parameterized, a multitude of join task types are necessary. Each join
task maintains an internal pointer to its associated cooperative task (represented by
the arrows in the Fig. 6.4(b)), to allow heuristics reasoning about the join tasks to
determine which cooperative task the join is associated with.

By splitting a team task into cooperative and join components, we cleanly sep-
arate any constraints on the task as a whole from agent specific concerns, such as
ensuring that an agent is not oversubscribed or in the wrong location to perform a
task. This dichotomy allows the planner to reason about the join tasks separately
when resolving conflicts or optimizing the schedule, subject to constraints between
the join and its cooperative task. When scheduling a team task, our ASPEN heuris-
tics first schedule the cooperative task, then incrementally add join tasks for various
agents to fill its required and (possibly) optional roles. This allows the planner to
consider iteratively which agents to add to the task, rather than forcing it to build
the complete team profile the instant the cooperative task is added to the schedule.

As discussed in Section 3.1.3, we have extended ASPEN to support callbacks

83

6. Mutable Teams

Figure 6.4: Mutable teams are encoded in ASPEN as a combination of cooperative
and join tasks, as well as metric resource timelines serving as records of agent
requests.

when various changes to the schedule are made. These were intended primarily to
support the efficient maintenance of constraints between the cooperative and join
tasks. For instance, when a cooperative task is moved, all associated join tasks
are moved with it by the appropriate callback in order to maintain their positions
relative to the cooperative task. While this could be represented by constraints
in ASPEN’s temporal constraint network, significant time would be required to
repair the violated constraints whenever a cooperative task is moved. Instead, we
maintain the following implicit constraints through callbacks that trigger when a
cooperative task is modified:

1. If a cooperative task is moved, all join tasks also are moved, such that their
placement relative to the cooperative task remains unchanged.

2. If a cooperative task’s estimated duration shrinks, all join task durations are
reduced so as not to extend past the end of the cooperative task. Any join
task now scheduled to start after the end of the cooperative task is deleted.

3. If a cooperative task’s estimated duration increases, the duration of all join
tasks scheduled to end at the same time as the cooperative task will be in-

84

6.3. Mutable Teams and the Planner

creased to match. An alternative strategy would be to not extend the join
tasks, then repair any resulting conflicts by either extending an existing join
or adding a new agent. We have taken the former approach, as it proved to be
appropriate in the majority of situations. No flexibility is lost, as the planner
is free to shorten a join task if its extension creates a conflict.

4. All join tasks of a deleted cooperative task will be deleted.

5. If a join task is deleted, the cooperative task’s duration estimate is updated.

Roles as Resources

We encode the bounds on the agents that can be utilized in each role using ASPEN’s
metric resource timelines. These timelines track the value of an arbitrary resource
over time, and may be constrained such that any value outside of a specified range
indicates a conflict that must be repaired. Tasks may place reservations on the
resource timelines that change the value of the timeline throughout the duration of
the reservation.

We establish one or two resource timelines for each role/task pair, which we
refer to as agent request timelines. If a role includes both required and optional
slots (that is, if its agent bounds are [M,N], M > 0 and N > M), two time-
lines are created: one for the required slots and one for the optional. If a role is
purely required or optional, only the relevant timeline is created. This separation
into required and optional resources allows the planner to treat any shortfalls on
the required timeline as conflicts, while ignoring empty optional roles during plan
repair.

When scheduled, the cooperative task places positive reservations on all associ-
ated agent request timelines with values equal to the number of agents required (or
useful) in each role. An example of these reservations is diagrammed in Fig. 6.4(c):
the blocks above 0 are reservations by the cooperative tasks. In this example, task
A has a single role, with agent bounds of [1, 2]; task B also has a single role, with
bounds of [1, 1].

Join tasks place reservations with a value of -1 and a duration corresponding
to that of the join task on the relevant agent request timeline. These offset the
cooperative task’s positive reservation, and balance at a value of 0 when enough
agents are assigned to a given required role. Required agent request timelines are
specified as having a valid value of 0: if at any point a required role is not filled,
the timeline will have positive value, and ASPEN will place the conflict on its list
to be repaired in the next plan repair cycle.

In contrast, optional agent request timelines do not need to balance for a sched-
ule to be valid. Instead, the presence of a nonzero value indicates that an optional

85

6. Mutable Teams

role is open. Several of our optimization heuristics use this mechanism as a means
for rapid identification of inefficient areas of the schedule.

Ideally, we would create a separate timeline for each role of each task instance,
ensuring that reservations placed by two tasks of the same type never interact.
Unfortunately, ASPEN does not support the dynamic creation of timelines, nor the
parameterization of reservations with respect to the timeline they are placed on. As
a result, we instead create one timeline for each role in each task type, not per task
instance: multiple task instances may place reservations on a given timeline.

This representation increases the complexity of reasoning about open roles and
reduces the utility of the agent request timelines. For instance, we must ensure
that a role is never oversubscribed, even temporarily. If a task of type T requires
one agent, tasks T1 and T2 are scheduled concurrently, 2 agents are (incorrectly)
assigned to T1, and none are assigned to T2, the agent request timeline will not be
in conflict, despite the oversubscription of T1 and the undersubscription of T2. We
enforce this constraint through our callback mechanism by deleting any join task
that creates an oversubscription condition shortly after it is added.

Because reservations from multiple tasks interact, we cannot directly infer
which tasks have open required or optional roles from the timeline alone. Instead,
we maintain explicit links between the join and cooperative tasks that allow our
heuristics to rapidly construct the team profile for all tasks placing reservations
upon a segment of a particular timeline. This additional computation negates some
of the efficiency benefits provided by agent request timelines.

Complete Scheduling Example

We now present the a complete example of the addition of a cooperative task and
its associated join tasks. The planner defines:

• One task instance Tj per cooperative task of type T to be performed

• One join task Jk of type J(Ai, R, T) per agentAi that is filling a role of type
R in a task of type T . Tj maintains a mapping from role to associated join
task(s), if any, and vice-versa.

• Two agent request timelines per role type for tasks of type T :

– One for required role slots: TLT,r
– One for optional role slots: TLT,o

• One agent lock timeline TLAi per agent Ai to ensure that agents are not
oversubscribed

86

6.3. Mutable Teams and the Planner

Fi
gu

re
6.

5:
A

n
ex

am
pl

e
of

sc
he

du
lin

g
a

ta
sk

w
ith

re
qu

ir
ed

an
d

op
tio

na
lr

ol
es

.
N

ot
e

th
at

at
th

e
en

d
of

st
ep

(c
),

th
e

sc
he

du
le

is
va

lid
(e

.g
.a

ll
re

qu
ir

ed
tim

el
in

es
(T
L
T
,r

1
)a

re
ba

la
nc

ed
).

St
ep

(d
)fi

lls
an

op
tio

na
lr

ol
e

pa
rt

w
ay

th
ro

ug
h

th
e

ta
sk

,r
es

ul
tin

g
in

a
sh

or
te

rt
as

k
du

ra
tio

n.

87

6. Mutable Teams

Fig. 6.5 illustrates the steps involved in the planner adding a cooperative task
to the schedule and filling its required and optional roles. The task being scheduled
(T1) includes one role, with agent bounds of [2, 3]. The planner schedules and
optimizes a task of type T as follows:

1. Add a task Tj of type T to the schedule. This places a reservation on the
associated required and optional agent request timelines (Fig. 6.5(a)).

2. The schedule is now invalid, since T requires at least two agents, unbalanc-
ing TLT,r1 (Fig. 6.5(a)).

Note that the timeline consists of increment/decrement segments associated
with task instances, making it trivial to derive the list of tasks contributing to
any given invalidity.

3. The planner iteratively selects a task that is contributing to the conflict and
has unfilled required role slots, then adds an agent to it by adding a join task
of type J(Ai, R, T) (Fig. 6.5(b) and (c)).

4. Suppose the current task length over-runs a deadline, producing a conflict
that must be repaired. One way to do so is to fill an optional role, reducing
the task’s duration, as is diagrammed in Fig. 6.5(d). By adding agent A3 to
a portion of Tj’s optional role, Tj’s duration is reduced, as are the durations
of the other join tasks.

Repair continues until all required timelines are balanced. Note that additional
conflicts may be introduced by adding an already occupied agent to the task; the
planner’s heuristics attempt to avoid such cases. If unavoidable, further repair will
be triggered by the conflict on the agent lock timeline (TLAi). The order in which
conflicts are repaired is subject to the design of the planner’s heuristics1.

6.3.3 Alternative Representations

Before selecting the representation discussed above, we investigated several alter-
natives, each of which has distinct advantages and disadvantages. Several variants
on agent request timelines provide tradeoffs between different types of complex-
ity. ASPEN’s parameter constraint network could be leveraged to encode muta-
ble teams, but at the cost of forgoing many of ASPEN’s advantages. Finally, we

1Note that the predicted duration of the task is updated whenever the team assigned to a task
changes. The expected duration is undefined when the task’s required roles are not filled, and will
be set to a default value (the expected duration under the assumption that all required roles and no
optional roles are filled) to allow planning to proceed.

88

6.3. Mutable Teams and the Planner

considered several approaches utilizing hierarchical decomposition, but they were
insufficiently flexible to represent mutable teams.

Role Timeline Variants

The agent request timelines approach makes use of up to two timelines per role
type per task type: one for any required slots in the role, and one for any optional
slots. We considered two variants on this approach that modify the fashion in which
timelines are used.

The first variant is to utilize a single timeline per role type per task type, com-
bining all agents filling the role on a single timeline. This has the advantage of
flexibility: an agent may be removed from the role, and as long as the task still
has the required number of agents, a conflict will not result. Our current approach
introduces an artificial distinction between the required and optional slots of a role
in order to ease the detection of open required roles. At times, this results in unnec-
essary repair. One of our repair heuristics is designed to resolve conflicts resulting
from a lack of required agents, by examining the assigned agents to determine if
an agent in an optional slot may be moved to a required slot for the same role to
resolve the conflict. The primary disadvantage to using a single timeline per role
type is that it becomes impossible to use the mechanics of the timeline to detect
timespans in which a required agent is missing: an overlapping task with a filled
optional role slot may mask the lack of a required agent in separate task instance.

The second variant builds upon the first, by creating one timeline per role type
per task instance, where the bounds on the timeline correspond exactly to the role
bounds. This avoids the masking problem, at the cost of maintaining a large num-
ber of resource timelines. Representationally, this approach is superior to our cur-
rent agent request timelines approach, as the timelines may be used to directly
determine which tasks have open roles or over- or under-subscription conflicts. In
addition, the artificial distinction between required and optional slots in a role is
eliminated, removing one source of spurious conflicts. This is our preferred repre-
sentation. However, ASPEN does not support the dynamic creation of timelines,
so we selected the dual-timeline approach out of pragmatism.

Parameter Constraint Network

Another possibility is to maintain a single cooperative task on the schedule, while
encoding all information about the task’s roles and which agents are assigned to
them in ASPEN’s Parameter Constraint Network (PCN). The PCN is a network of
constraints between tasks and their parameters that may be augmented by arbitrary
user-supplied functions. It would be feasible to generate reservations against the

89

6. Mutable Teams

agent-specific timelines (e.g. position), eliminating the need for join tasks. Further,
the bounds on each role could be directly encoded, rather than relying on a pair of
timelines for each role type.

This approach is the most flexible of the options we considered, but its very
flexibility is the source of many of its disadvantages. All conflicts raised in ASPEN
as a result of problems with agent assignments to cooperative tasks would appear
as unsatisfied dependencies, sidestepping much of ASPEN’s ability to apply ap-
propriate repair methods to each type of conflict. In our current implementation,
all unsatisfied dependency conflicts may be resolved by propagating the PCN. En-
coding role assignments in the PCN offloads the majority of the repair effort onto
external code, negating many of ASPEN’s advantages as a planner. In addition,
to represent mutable teams, the PCN would need to be extended to support array
types in order to cleanly store constraints between a cooperative task and a variable
(technically unbounded) number of join tasks. Extending the PCN in this fashion
would be a complex and error-prone undertaking.

Hierarchical Decomposition

Another class of representations hierarchically decompose the cooperative task, re-
fining the task definition with each level of decomposition. While there are advan-
tages to the two hierarchical representations we have examined, their disadvantages
are significant. Most importantly, representing mutable teams is awkward at best,
nullifying many of their advantages.

We have evaluated a decomposition in which each cooperative task decom-
poses at two levels: role set and role assignment (Fig. 6.6). The choice of role
set determines which roles will be filled, while the role assignment level selects
specific agents to fill the roles. This explicitly encodes the search tree that the
planner must explore to find a viable assignment of agents to roles, and dovetails
with ASPEN’s ability to specify alternate decompositions for tasks. In domains
with immutable teams and homogeneous agents, the choice of role set is sufficient
to perform duration prediction, although this is not the case in our domains of inter-
est. The role assignment level requires the planner to select the entire team at once,
a more complex decision than the incremental approach to agent assignment we
utilize. In addition, the branching factor is combinatorial in the number of agents
and role types.

Another approach is to decompose the task into one task per role slot, then
decompose each of these into specific agent assignments, as exemplified in Fig. 6.7.
The task must be fully decomposed before duration prediction can be performed
in any domain, but this approach allows the incremental selection of agents and
reduces the branching factor. The only significant advantage of this alternative

90

6.3. Mutable Teams and the Planner

Figure 6.6: An alternative encoding for teams with optional roles is to hierarchi-
cally decompose the cooperative task into the set of filled roles, then the assignment
of agents to the roles.

Figure 6.7: Instead of first decomposing the cooperative task into role sets, an
alternative is to decompose it into a set of role slot tasks, each of which is then
decomposed into a task assigning a specific agent (or no agent) to the slot.

91

6. Mutable Teams

Figure 6.8: Representing mutable teams with a hierarchical decomposition ap-
proach requires the planner to break the decomposition link to the role set before
re-decomposing the cooperative task into the new role set.

over agent request timelines is that the ties between the cooperative task and its
children are explicit, instead of using internal join → cooperative links (curved
arrows in Fig. 6.4).

However, all hierarchical decompositions share a significant flaw with respect
to proactive replanning: representing mutable teams is awkward. While a decom-
position tree naturally represents a particular team, there is no clean way to rep-
resent team changes, as ASPEN (and most other planners) assume a task can be
decomposed in a only one fashion. Instead, as Fig. 6.8 illustrates, the planner must
break the decomposition link between the cooperative task and the role set task
(or set of role slot tasks), shorten the current role set and assignment tasks, then
re-decompose the cooperative task into the new team. This creates many difficul-
ties when planning for mutable teams that may involve a number of team changes
throughout the execution of a task. Additional constraints must be introduced to
ensure that the separated role sets maintain their assigned positions relative to the
cooperative task, and the natural tie between cooperative and role set tasks, the
primary advantage of the decomposition approach, disappears.

C-TAEMS

C-TAEMS (Wagner and Lesser (1999), Boddy et al. (2005)) is a hierarchical task
representation used by many scheduling research groups, recently the Coordina-
tors project (Smith et al. (2006), Musliner et al. (2006), Smith et al. (2007), Mah-
eswaran and Szekely (2008)). C-TAEMS, and its predecessor TAEMS, are domain-
independent task modeling frameworks that are used by a variety of planners and
schedulers to represent and reason about complex problems. C-TAEMS describes
tasks as having a variety of alternative approaches that the scheduler selects be-
tween, in order to optimize some set of criteria, often involving task duration and

92

6.3. Mutable Teams and the Planner

quality (an abstract measure of the utility of a given approach to a task). Duration
may be represented either as a scalar or a discrete distribution, usually with five or
fewer potential durations. A parent task’s duration is defined as the length of the
time interval that contains all of its children, and is calculated prior to execution by
combining its children’s duration distributions.

Quality is used to manage which tasks from a set of potential tasks are chosen.
Quality accumulation functions (QAFs) determine a parent’s quality based on the
quality of its children, and are used to represent how children should be selected.
Examples include max, which functions as a logical OR; exactly one, which pro-
vides quality if exactly one child is executed; and sync sum and, which provides
quality only if all children begin execution simultaneously.

In addition to duration and quality, C-TAEMS provides for hard and soft con-
straints between arbitrary sets of tasks, such as enablement, facilitation, and hinder-
ing. Facilitation and hindering modify the quality or duration of the affected task in
a positive or negative fashion, respectively. Facilitation and hindering constraints
imply temporal ordering: the facilitating task must execute prior to the facilitated
task.

C-TAEMS may be used to construct a hierarchical representation that partially
captures the characteristics of a team with required and optional roles (Fig. 6.9).
Each role slot is represented as having a set of alternatives corresponding to the
different agents that are able to perform it, similar to the representation depicted in
Fig. 6.7. A QAF of exactly-one ensures the selection of a single agent for each role
slot, while a null task (with zero quality and duration) represents that the Bracer
role may be left unfilled. A QAF of sync sum and ensures that both role slot tasks
start simultaneously, and implicitly ensures that the roles are not filled by the same
agent: in C-TAEMS, an agent may only perform a single task at a time.

Unfortunately, while C-TAEMS supports a flexible representation of duration,
it does not provide a synchronous constraint allowing a task to modify the duration
of another. Without such a mechanism, we cannot cleanly model the effect that
filling an optional role may have on the length of the required roles. While we could
enumerate the possible combinations of agents, such as in Fig. 6.6, the number of
leaf tasks is combinatoric in the number of agents.

In addition, C-TAEMS shares the same flaw as the other hierarchical approaches
discussed above: it is not possible to represent mutable teams naturally. Proactive
replanning must not only be able to add or remove agents from a team, but be able
to plan to do so in advance. The arbitrary nature of when agents may be scheduled
to arrive or depart greatly increases the complexity of any representation that uses
hierarchical tasks with defined sets of children, and results in unsatisfying solutions
such as that presented in Fig. 6.8.

93

6. Mutable Teams

Figure 6.9: Optional roles may be partially represented in C-TAEMS through ap-
propriate quality accumulation functions, the use of leaf tasks representing the
commitment of an agent to a specific role slot, and empty tasks representing an
open optional role slot.

6.4 Mutable Teams and the Executive

6.4.1 Required Executive Capabilities

Mutable teams require a much more complicated executive, primarily in the design
of the tasks themselves. It must be possible to add or remove agents throughout
the execution of a task: if live task modification is allowed, the team profile may
change dynamically as execution proceeds. The planner also assumes that if mu-
table teams are allowed, it is possible to replace an agent with another in mid-task.
This will range from easy to very difficult for the executive, depending on the type
of task and the degree of coupling between the agents. Agents in non-contact roles,
such as sensing, may be easily added or removed, while those performing tasks
such as cooperative manipulation will require careful engagement and disengage-
ment procedures to ensure the task does not fail during the addition or removal
of an agent. We have considered many of the implications mutable teams have
for execution, but have not fully explored these issues, as our experimentation has
been performed in simulation. While significant effort is required to support mu-
table teams at the executive level, the nature of optional roles and mutable teams
provides the task designer with the opportunity to construct tasks that are more
flexible, fault-tolerant, and scalable than ones designed for immutable teams with
no optional roles.

94

6.4. Mutable Teams and the Executive

6.4.2 Designing Tasks to Utilize Optional Roles

Optional and required roles allow the designer to specify the minimum set of agents
that may be able to accomplish the task (i.e. the set of required role slots), albeit
slowly and in an unreliable fashion. If optional roles are not used, and a greater
degree of reliability is desired, the designer must require additional agents beyond
the minimum. This reduces the degree to which tasks may be executed in paral-
lel, and prevents a minimal team from attempting the task, even if sufficient time
is available for the team to (slowly) complete the task. Optional roles allow the
designer to specify the task’s minimum acceptable performance, rather than the
desired nominal performance, increasing the team’s flexibility and applicability.

Optional and required roles allow the task designer to explicitly specify what
additional agents may be added to the team, and how they improve the team’s
performance. This increases the flexibility of the system, as the planner is able to
allocate more or fewer agents as the situation warrants: if a task is far from the
critical path, the optimal approach may be to attempt it with the minimum set of
agents, reserving the remainder for more critical tasks.

The converse also is true: the task designer is free to specify the full set of op-
tional agents that may improve the task, without regard to the needs of other tasks:
optional roles shift the selection of the optimal team composition from design-time
to execution-time. When working without optional roles, the designer must select
a single point in the range of possible team configurations, balancing the desire
for improved performance against the need to ensure other tasks may operate in
parallel. Optional roles free the designer from this constraint, allowing him to in-
stead specify the maximum set of useful agents, secure in the knowledge that the
additional agents will be utilized only if they are not needed elsewhere. Roles that
would have been discarded as not absolutely necessary may be included, and will
be filled only as appropriate to the overall schedule. If the resources are available,
the planner will allocate them appropriately among the active tasks, improving
performance beyond the nominal case that is encoded without optional roles. As
additional agents become available, the teams will incorporate them, improving
performance without requiring entirely new tasks to be developed for the larger set
of agents.

Teams incorporating optional roles are more fault-tolerant, scalable, and flex-
ible. The planner is able to make use of optional roles to adapt the team to the
situation it faces, rather than relying on the one-size-fits-all approach common to
teams lacking optional roles.

Optional roles may be added gradually to an existing system: tasks initially
may be encoded as having only the minimal set of required roles, with optional
roles being developed incrementally. For instance, optional roles may be added to

95

6. Mutable Teams

ameliorate problematic cases that are discovered as the development and testing
cycle proceeds. Common types of optional roles include non-contact sensing (e.g.
scouting or redundant sensing), load-sharing (e.g. assisting with the transport of a
heavy object), and failure prevention (e.g. bracing the other end of a connection
being made).

When considering the encoding of a task, those role slots that absolutely must
be filled for the task to complete should be specified as required. Once this base
set of required role slots is identified, the designer should consider how additional
agents could be used to increase the team’s rate of progress, reduce the likelihood
of a failure, reduce the impact of any failure, reduce the consumption of depletable
resources, or reduce overall component wear. Optional roles should be added to the
task as appropriate, building up from those that are easy to integrate (e.g. scouting)
to those with more complex maneuvers required during agent addition and removal.
Almost every task may be augmented with optional roles in some fashion: even
small improvements are worthwhile, as the planner will fill the role only if its effect
is useful in the scenario that obtains. Table 6.1 summarizes nine generic optional
roles, and their potential effects on a task.

6.4.3 Designing Tasks to Utilize Mutable Teams

Optional roles provide significant benefits, while mutable teams magnify them.
By designing a task to support mutable teams, the designer improves the planner’s
ability to fluidly reassign resources as the developing scenario warrants and to react
to problems by adding the appropriate agents to teams that are under-performing.
Mutable teams ensure that agents will be utilized efficiently, reducing their idle
time by allowing them to assist a team just until their next scheduled task begins.
While optional roles are useful in isolation, their full potential is realized only when
used in combination with mutable teams.

The most challenging aspect of mutable teams that confronts the designer is the
support of agent addition and removal in mid-task (team changes). The difficulty of
a team change varies widely with the task and role. For instance, adding or remov-
ing sensing agents generally will not require a reconfiguration of any other agents
in the team, while adding or removing a cooperative manipulation agent will in-
volve complex maneuvers to safely redistribute the team’s load. When considering
whether to add a particular optional role, the costs of development can be weighed
against the potential gains. Many optional roles are of the “non-contact” variety,
as they are easier to implement, and have less integration overhead. However,
“contact” optional roles should not be discarded out of hand: they often provide
improvements in the task significant enough to warrant the development effort.

The executive may also make simplifying assumptions to achieve a compro-

96

6.4. Mutable Teams and the Executive

Ta
bl

e
6.

1:
Ta

sk
s

m
ay

be
au

gm
en

te
d

w
ith

a
w

id
e

va
ri

et
y

of
op

tio
na

l
ro

le
s,

w
ith

an
eq

ua
lly

w
id

e
ra

ng
e

of
ef

fe
ct

s.
A

fe
w

ex
am

pl
es

ar
e

de
ta

ile
d

he
re

.
E

ff
ec

ts
no

te
d

in
ea

ch
ex

am
pl

e
in

di
ca

te
th

e
lik

el
ih

oo
d

of
im

pr
ov

em
en

ti
n

th
e

re
le

va
nt

ca
te

go
ry

.
In

te
gr

at
io

n
dr

ag
is

th
e

de
gr

ee
by

w
hi

ch
th

e
te

am
is

sl
ow

ed
w

hi
le

th
e

ne
w

ag
en

tj
oi

ns
th

e
te

am
,a

nd
is

on
a

sc
al

e
of

1
(n

o
ef

fe
ct

)t
o

5
(p

ro
gr

es
s

ha
lts

w
hi

le
th

e
ag

en
tj

oi
ns

).

⇓
R

ol
e
\

E
ff

ec
ts
⇒

In
te

gr
at

io
n

D
ra

g
Sp

ee
d

R
el

ia
bi

lit
ya

Fa
ilu

re
M

iti
ga

tio
nb

Q
ua

lit
y

R
ed

uc
e

R
es

ou
rc

e
U

sa
ge

R
ed

uc
e

W
ea

r&
Te

ar

Sc
ou

tin
g

1
X

X
X

R
ed

un
da

nt
se

ns
in

g
2

X
X

Su
pp

or
tw

ei
gh

to
fb

ea
m

to
al

lo
w

fin
er

pl
ac

em
en

td
ur

in
g

do
ck

in
g

5
X

X
X

X

Sh
ar

e
lo

ad
of

tr
an

sp
or

te
d

ob
je

ct
5

X
X

X
X

X

To
w

a
m

ir
ed

te
am

ou
to

fs
an

d
5

X
X

X

B
ra

ce
a

po
st

w
hi

le
it

is
be

in
g

ra
is

ed
3

X
X

X
X

M
ap

a
su

br
eg

io
n

1
X

X
X

X
X

In
se

rt
an

d
tig

ht
en

a
fr

ac
tio

n
of

a
la

rg
e

se
to

fb
ol

ts
2

X

Pr
ov

id
e

ad
di

tio
na

l
pr

oc
es

si
ng

no
de

fo
rd

at
a

co
m

pr
es

si
on

1
X

M
on

ito
r

te
am

to
im

pr
ov

e
er

ro
r

de
te

ct
io

n
an

d
pr

ev
en

tio
n

1
X

X

a
A

ro
le

th
at

im
pr

ov
es

re
lia

bi
lit

y
re

du
ce

s
th

e
lik

el
ih

oo
d

of
a

fa
ilu

re
oc

cu
rr

in
g.

b
A

ro
le

th
at

m
iti

ga
te

s
a

fa
ilu

re
re

du
ce

s
th

e
fa

ilu
re

’s
im

pa
ct

,

bu
td

oe
s

no
tn

ec
es

sa
ri

ly
re

du
ce

th
e

lik
el

ih
oo

d
of

th
e

fa
ilu

re
.

97

6. Mutable Teams

mise between the challenges of implementation and the flexibility afforded to the
planner. While the planner assumes that agents may be added or removed regard-
less of the task’s state, the executive may need to simplify the problem by allowing
team changes for specified roles to occur only at specific “interchange” states, such
as positions in which a transported load is statically stable. It may be easier for the
executive to redirect joining agents to the next interchange state and allow them to
join later than the planner intended, rather than building an extremely complex task
that allows agents to join in any state. If the training data used by the planner to
form duration predictions includes examples of the use of these interchange points,
the planner will implicitly include the effects of the interchanges into its reasoning.

6.5 Duration Prediction with Mutable Teams

The addition of mutable teams complicates the problem of duration prediction: the
Markov assumption no longer holds, as the planner now has knowledge of future
changes in the task’s state. This knowledge of future agent arrivals and depar-
tures, and the need to reason about the benefits of these team changes, expands the
complexity of duration prediction in two ways. The prediction algorithms must be
able to take into account (1) the effects of the current team profile and any pro-
posed team changes, as well as (2) any detrimental effects the act of integrating or
disengaging an agent may have on the team. We have developed two methods to
estimate the effects of the team profile: distribution transfer functions and particle
projection prediction. We characterize the strengths and weaknesses of each, and
utilize particle projection prediction in the remainder of this thesis. We have also
examined a series of approaches to approximately model how the integration and
disengagement of agents may affect a team. These are surveyed below, although
none are yet part of the currently implemented system.

6.5.1 Predicting the Effects of Team Changes

While the application of kernel density estimation as discussed in Section 5.4
works well when utilizing only the duration prediction aspect of proactive replan-
ning, mutable teams increase the complexity of the problem. With mutable teams,
agents may join or leave the team during a task’s execution, resulting in fluctua-
tions in how many agents are filling each role of the task. The approach discussed
in Section 5.4 works well with immutable teams, or if the changes in the profile
closely parallel those in the training data. It is also applicable if there are a discrete
(and small) number of states in which agents may join or leave the team in a well-
defined fashion and sufficient training data is available to cover the possible team

98

6.5. Duration Prediction with Mutable Teams

profiles.
However, if agents may join or depart the team at any time, the number of

potential team profiles explodes, making the collection of sufficient training data
infeasible, even for small tasks. To avoid this problem, we have factored out the
team profile from our task state. All training data is collected with immutable
teams, the number of agents in each role is included in the task state, and we infer
the effects of a given team profile.

The problem we address here is the prediction of the duration distribution for
a team P at a particular task state S, given a series of team profile changes T =
((t0, p0), (t1, p1)...(tn, pn)), where ti is how far in the future the change will occur,
pi is a vector of deltas to be applied to the number of agents filling each role, t0 is
the current time, and p0 is the null-change vector. The fundamental difficulty is that
the state of the task is unknown at each ti, due to the uncertain nature of execution.
This prevents us from directly applying our existing approach to prediction to each
segment of the task. Our methods of incorporating team profiles into duration
prediction take two very different approaches to estimating the task state at each of
the ti.

We have developed two methods to estimate the duration distribution for mutable-
team tasks: distribution transfer functions and particle projection prediction. Trans-
fer functions are relatively efficient to compute, and can be quite accurate, but only
if a number of restrictive assumptions hold. Particle projection is more compu-
tationally expensive, but is not subject to the limitations of the transfer function
approach. Both will be discussed here, but the remainder of the work utilizes par-
ticle projection prediction when mutable teams are enabled.

Distribution Transfer Functions

Distribution transfer functions make the simplifying assumption that the form of
a task’s duration distribution remains constant throughout execution for a given
team. That is, we assume here that as execution proceeds with a fixed team, the
distribution across remaining duration is translated steadily towards zero, with no
or little change in the number of modes or their shape. This is a severely limiting
approximation, as it assumes any execution-time events will only shift the distri-
bution, rather than change its form.

Under this assumption, we can build duration distributions from the task’s state
at the time the prediction is being computed for each of the different teams that
occur in the profile by applying the approach discussed in Section 5.4. This yields
a library of distributions that we assume to be canonical for each team. We then
compute a transfer function between the distributions for the teams at time ti and
ti+1, for all i. The transfer function transforms one distribution into the other, and

99

6. Mutable Teams

is an approximation of the effect that the team change pi+1 has on the duration
distribution (see below for a complete explanation of the construction of a transfer
function). Starting with the canonical distribution for the currently assigned team,
we are able to shift the distribution towards zero by (t1 − t0) to approximate the
effect of the passage of time, apply the transfer function between the canonical
distributions for teams P and P + p1, and repeat for all ti. We shift the final
distribution away from zero by tn (the time of the last profile change), to make it
relative to the current time, t0. This yields a duration distribution that incorporates
an approximation of the effects of the team profile.

The transfer function itself is a method of transforming a source distribution
A into a destination distribution B. Once computed, the transfer function may
be used to map new distributions similar to A into a form similar to B. To con-
struct a transfer function, correspondences first are established between points on
the probability density functions (PDFs) of A and B. This is done by sampling
a series of probability values from the distributions’ cumulative distribution func-
tions (CDFs), then pairing the associated points on their PDFs. For instance, in
Fig. 6.10 the points at dA1 and dB1 correspond to a CDF probability of 0.2 in their
respective distributions. When applying the transfer function, the point on A’s
PDF at dA1 should be mapped to dB1. Only three correspondences are illustrated
in Fig. 6.10 for clarity; in practice, many more points are sampled.

Once the correspondences have been established, we may calculate the trans-
formation to be applied to each point on an input distribution in order to transform
it from the domain of A to the domain of B. A point on A’s PDF may be described
with two values: the duration and probability: (pAi, dAi). A correct transfer func-
tion will exactly reproduce B, if A is presented as the input. Each point is thus
mapped by multiplying by the ratio of A and B’s probability and duration values:
(pA′i, dA

′
i) =

(
pAi ∗ pBi

pAi
, dAi ∗ dBi

dAi

)
Given an input distribution I of a form similar to A, we first find the points on

I’s PDF corresponding to the CDF probability values sampled during the creation
of the transfer function: (pI1, dI1)...(pIn, dIn). Each point on I’s PDF is then
multiplied by the corresponding A-B ratio: (pI ′i, dI

′
i) =

(
pIi ∗ pBi

pAi
, dIi ∗ dBi

dAi

)
.

A cubic splines is then fit to the resulting set of points (pI ′1, dI
′
1)...(pI ′n, dI

′
n) and

is used to interpolate all values of the transformed PDF. Algorithms A.1 and A.2
detail the steps involved in computing and applying distribution transfer functions.

Note that the assumption that a duration distribution has an unchanging form
implies that the number of modes of the distribution will remain unchanged over
the time span in question. Unfortunately, in our domains this does not hold: outly-
ing modes tend to disappear as the task approaches completion or failures occur, as
is illustrated in the experiments discussed in Section 6.6.1. This shortcoming drove

100

6.5. Duration Prediction with Mutable Teams

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Remaining Duration

P
ro

b
a

b
il

it
y

Distribution A

(pA
1
, dA

1
) = (0.13, 2.8)

(pA
2
, dA

2
) = (0.11, 5.8)

(pA
3
, dA

3
) = (0.02, 12.0)

PDF

CDF

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Remaining Duration

P
ro

b
a

b
il

it
y

Distribution B

(pB
1
, dB

1
) = (0.14, 8.3)

(pB
2
, dB

2
) = (0.19, 10.5)

(pB
3
, dB

3
) = (0.05, 13.3)

PDF

CDF

CDF = 0.2

CDF = 0.6

CDF = 0.9

Figure 6.10: The transfer function between a gamma and a normal distribution
is computed by calculating the ratios between the PDFs’ probability and duration
values at points where the CDF values are equal.

our development of particle projection prediction, discussed below. However, in
domains where this assumption holds, transfer functions may prove attractive due
to their low computational cost.

Particle Projection Prediction

In particle projection prediction, we take a more low-level approach. As in distri-
bution transfer functions, the problem remains the prediction of the duration dis-
tribution for a team at a particular state S, given a series of team profile changes
T = ((t1, p1)...(tn, pn)), where ti is how far in the future the change will occur
and pi is a vector of deltas to be applied to the number of agents filling each role.
Within the training database, we maintain links between successive observations
of a given training run, allowing us to traverse forwards in time along the run as-
sociated with a particular point. Particle projection prediction first builds a query
around the current task and team state. It then uses the observation links to project
each observation supporting the query forwards in time to t1. p1 is applied to
each resulting task state, and a query is performed centered at each of the modified
states. We then subsample from the resulting set of points to negate the branching
factor and repeat for i = 2...n. In essence, we build an implicit distribution across
the task state at each of the ti. The duration distribution formed at tn is then shifted

101

6. Mutable Teams

away from zero by tn to form our final estimate.
To provide concreteness, Fig. 6.11 will be referenced throughout this discus-

sion. It plots a training database consisting of four runs of a task with two state
variables: the number of agents assigned and the distance remaining to the task’s
goal. The range of the database is, as before, the remaining duration. In this ex-
ample, the goal is to estimate the duration distribution for a task starting with one
agent and 9.5 units from the goal, given that a second agent will join the team in
2 time units. Fig. 6.11 flattens the agent dimension, using dashed lines to denote
single agent data or queries and dotted lines for the two-agent state. As distance
remaining is the only state variable in the plot, query kernels are denoted as hori-
zontal rectangles spanning a range of distances. The agent coordinate of the query
kernel is denoted by the line type of the rectangle.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18

Q
in

i (
1
 a

g
.)

Q
1
 (

2
 a

g
.)

Q
2
 (

2
 a

g
.)

Pt. A

Pt. B

Pt. C

Initial State:
Distance Remaining = 9.5
Agents = 1

Remaining Duration

D
is

ta
n

c
e

 R
e

m
a

in
in

g

Training Data: Range vs. Distance Remaining

Initial point 1

Initial point 2

Proj. pt. 1

Proj. pt. 2

Run 1 (1 agent)

Run 2 (1 agent)

Run 3 (2 agents)

Run 4 (2 agents)

Figure 6.11: In this example of particle projection prediction, the task starts with
1 agent and 9.5 distance units from the goal. An additional agent will arrive in 2
time units. This diagram flattens the agents dimension of the state space, depicting
data and query kernels for one agent as dashed lines and two-agent elements with
dotted lines.

Given the initial state S, we first apply a query kernel around it, as in standard

102

6.5. Duration Prediction with Mutable Teams

duration prediction (Section 5.4,Qini in Fig. 6.11). This yields a set ofN weighted
points (Initial point 1 and 2 in Fig. 6.11). We then trace forward along the training
runs associated with these points t1 time units. In Fig. 6.11, this consists of travers-
ing two time units to the left, as depicted by the arrows, arriving at points Proj. pt.
1 and 2. The resulting set of projected points are the set of states that have been
reached in the past in t1 time units from the training points near our current state.
We then modify the state of each projected point by p1; in Fig. 6.11, this entails
adding an additional agent. Note that the resulting states are no longer necessarily
points in the training database: there are no observations from runs 3 or 4 with the
same distance remaining value as Proj. pt. 1 or 2.

We then apply a query kernel around each of the projected, modified states (Q1

and Q2 in Fig. 6.11), resulting in N sets of weighted points. In Fig. 6.11, these
sets consist of {B,C} and {A,B}, with A and C receiving low weights, while B
is assigned a relatively high weight in the second set (where it is near the center
of the query kernel) and a low weight in the first. The per-point weights are then
multiplied by the weight of projected points: wC = wC ∗winitialpoint1. TheN sets
of weighted points are then merged: the result is the union of the sets. The weight
of each point in the merged set is the sum of the point’s weight across all sets that
it of which it was a member. For example, B falls within both Q1 and Q2. After
merging, B’s weight will be wB = wB,Q1 ∗winitialpoint1 +wB,Q2 ∗winitialpoint2.
The resulting weights represent an approximation of the likelihood that a given
point would be reached from the current task state.

If there are remaining profile changes, we then project the merged set forward
in time and continue as before. If this is the final profile change, a duration distri-
bution is built, as in Section 5.4. The distribution is then shifted by tn to yield the
final duration prediction.

In this fashion, we are able to move through the training database to approx-
imate the courses that may be taken by the current team. The approach outlined
above results in a “complete” estimated distribution, but becomes infeasible when
the team profile contains more than a few team changes. This is because with every
change in the team profile, the number of points increases by a factor of the number
of points within a query kernel. If the training data is even moderately dense, the
number of points being tracked explodes and becomes computationally infeasible.

To address this, we use an approach similar to particle filtering (Gordon et al.,
1993) by trackingO points, instead of all possible points. After performing the ini-
tial query at state S, we extract a weighted random sample (with replacement) of
O points from the set of weighted points resulting from the query. These O points
are then projected forward as before, and their state is modified by pi. After apply-
ing a query kernel around each, we merge the resulting sets of weighted points as
above and resample a new set ofO points to again project forward. This eliminates

103

6. Mutable Teams

the compounding of the branching factor, and makes particle projection predic-
tion computationally feasible, although accuracy is degraded. The system designer
may select a value of O representing a reasonable tradeoff between computational
expense and accuracy for his domain.

When projecting observations forwards, there is no guarantee that an observa-
tion will be in the training set exactly (ti+1 − ti) units ahead of the observation
being projected. One approach would be to interpolate between the two observa-
tions preceding and succeeding the desired time. We instead use the observation
nearest to the desired time, and track the cumulative error, ej . With each projec-
tion, the distance between the time of the future observation and the desired time is
added to ej . Once the final projection and set of queries have been performed, the
points are shifted by ej + tn before kernels are placed around them and combined
to build the estimated duration distribution. The complete algorithm is detailed in
Algorithm A.3.

Particle projection prediction is subject to none of the disadvantages or restric-
tions of distribution transfer functions, and can achieve similar levels of accuracy,
given sufficient particles. However, it is more computationally expensive, by a fac-
tor of approximately 30 (see Section 6.6.1), which make transfer functions attrac-
tive for domains in which their assumptions hold. Particle projection may also oc-
casionally generate a predicted distribution that varies significantly from the “true”
underlying distribution, if the subsampling step happens to select a group of low-
probability runs. However, as in particle filtering, this is unlikely, and even more
unlikely to occur for any number of consecutive predictions. Since we update our
predictions at each timestep, any random error in prediction will be rapidly com-
pensated for.

In this discussion, we have implicitly assumed that the exact arrival and depar-
ture times for agents joining and leaving the team are known (ti is a scalar, not a
distribution). This simplifying assumption has been made in this work for compu-
tational reasons. However, taking uncertain arrival (or, less likely, departure) times
into account is a simple extension to our particle projection algorithm. Instead of
projecting each point in points by the scalar tj+1, nest a loop inside the loop across
all points. This nested loop would iterate across the set of weighted arrival times
tj+1,1...tj+1,m (either a discrete set, or a sampling of a distribution), and:

• Project pti into the future by tj+1,k time units

• Multiply weight(pti) by weight(tj+1,k) (the likelihood of this arrival time)

• Proceed as in lines 29-31 of Algorithm A.3

However, as this incurs obvious computational penalties, we chose instead to
use discrete arrival times for the work reported here.

104

6.5. Duration Prediction with Mutable Teams

6.5.2 Reasoning About Engagement and Disengagement Costs

While particle projection prediction provides reasonable estimates of the effects of
additional (or fewer) agents, it assumes that there is no cost to agents integrating
into, or disengaging from, a team, and that these acts are instantaneous. Consider a
Transport task that may use [2, 4] transporter agents and [0, 1] scout agents. Adding
or removing a scout from the team will affect the team’s ability to plan an effective
route, but the act of addition or removal will not slow down the remainder of the
team: the transporters will not make less progress while a scout agent is in the
process of joining the team. In contrast, if a transporter is added, the rest of the
transporters must stop, possibly set down the object being moved, and reposition
to allow the new agent to grasp the cargo. In this case, the act of addition pre-
vents further progress towards the goal from being made while the new agent is
integrated into the team. Similar effects may occur while an agent is disengaging
from the team. These degrading effects may reduce the benefit of a team change,
and should be taken into account when the planner is reasoning about whether to
add a team change to the schedule. We discuss here several potential methods for
approximating these effects. However, note that our experimental system currently
assumes that agents may join or depart a team instantaneously, although it does
take setup actions (e.g. moves) into account.

The remainder of this section discusses a generic transfer of an agent from one
team to another. We define such a transfer as consisting of disengage, transfer, and
integrate tasks (Fig. 6.12), which represent the three stages of a transfer. When im-
plemented, these may be combined into a single transfer task, but we will address
them separately for the purposes of this discussion. The task that an agent is being
removed from will be referred to as the donor task, and the receiving team as the
recipient. During disengagement and integration, the agent is leaving or joining
the relevant team, and may adversely affect the team’s progress. The transfer task
transitions the agent to a state from which it may join the recipient task; in practice,
this is often a simple move task, but in some situations it may involve a complex
plan.

When considering disengagement and integration costs, we must be able to cal-
culate their effect on the donor’s and recipient’s duration distributions (timespans
(a) and (e) in Fig. 6.12), in order to reason about whether a transfer is worthwhile.
For clarity, we will refer solely to disengagement and donor tasks in the remainder
of this section; integration and recipient tasks are representationally identical.

The disengage task represents that disengaging will take some non-negative
amount of time (possibly zero) and will affect the donor task in no way (nonintru-
sive), by slowing its progress (intrusive), or by stopping its progress (monopoliz-
ing).

105

6. Mutable Teams

Figure 6.12: A prototypical agent transfer from a donor task to a recipient task.
Example duration distributions are indicated by the dotted lines. Shaded areas in-
dicate the portion of each task that is affected by the disengagement and integration
tasks.

We have considered several approaches to representing the effects of a disen-
gage task. While we have not experimentally evaluated the techniques discussed
below, we feel that average drag is likely a reasonable compromise.

Expanded State Space

The most straightforward approach is to augment the donor task’s state space with
that of the disengage task, and perform particle projection prediction in this ex-
panded space. The disengage task would be eliminated, and the start of the transfer
task would be constrained to start after the end of the disengagement by specifying
a constraint as a function of the donor task’s state. This approach has the advan-
tage of being able to model arbitrary effects, but has a number of detriments. Most
notably, the donor task’s state space explodes, as it will need to be able to represent
the disengagement and integration of all of its role types throughout the task’s state
space. Since this amounts to the addition of one or more dimensions to the state
space, a significant amount of additional training data will be required. Because
our approach to prediction examines nearby points in the state space, examples of
disengagement will need to be obtained throughout the execution of a task: a dis-
engagement that is observed near the beginning of the task will not be included in
a prediction for a disengagement scheduled to start near the end.

Expanding the donor task’s state space is feasible when one of the following is
true:

• The scenario’s tasks have low-dimensional state spaces or are nearly deter-
ministic, thus requiring only a small amount of training data.

• Training data is easy and cheap to collect.

106

6.5. Duration Prediction with Mutable Teams

• The effects of disengagement are not dependent on the donor task’s state,
which allows a few observations of disengagement to be synthetically in-
serted into the training database throughout the state space.

Besides demanding additional training data, this approach requires that the
planner be able to represent a constraint on the start time of the transfer task as a
function of the (continuously updated) state of the donor task. ASPEN’s Parameter
Constraint Network and Temporal Constraint Network are sufficiently expressive
to represent this type of relationship.

Drag

If we do not include disengagement in the donor task’s model, we must instead be
able to transform the donor task’s duration distribution to approximate the effects
of the disengage task. We propose to do so by estimating the drag of the disengage
task on the donor. We define instantaneous drag as the fraction of a timestep in
the donor task that is consumed by the disengage task: a drag of 0 corresponds to
a nonintrusive disengagement, while a drag of 1 represents a monopolizing disen-
gage maneuver. In the (extremely unlikely) case that disengaging speeds progress
in the donor task, drag would become negative, with a value of -1 representing an
infinite increase in speed. By assuming that drag is neither dependent on the donor
task’s state nor on time, we are able to build an estimate of the average drag for
each disengagement task, given a small set of examples.

In general, drag may be a function of the disengage task’s state, and thus may
change over time. For instance, a disengage task might require that the donor
task pause during the initial portion of disengagement, but then resume normal (or
slowed) operations for the remainder. While there are some very specific situations
in which modeling drag as a function of time would prove useful, we feel the small
increase in expressiveness does not warrant the additional complexity.

In order to estimate a disengage task’s average drag, we wish to estimate the
difference in the mean of the donor’s predicted duration from one timestep to the
next, where s is the length of the timestep: ∆ = Edur(t) − Edur(t + s). During
normal operation, ∆ should always be equal (or nearly equal) to s: if the team
works for s time units, the predicted duration should drop by s units, barring fail-
ures or other unexpected state changes. If the disengage task is interfering, ∆ will
be in the range [0, s). Drag is the fraction of the timestep during which progress on
the donor task was not made: D = 1− ∆

s .
By assuming that drag does not vary during the course of the disengage task,

we may estimate D by comparing the expected duration of the donor task prior to
and following the execution of the disengage task:

107

6. Mutable Teams

Figure 6.13: Applying the drag of a disengage task to the duration distribution of
the donor stretches the distribution by the drag factor at each timestep during which
the disengage task is active.

∆ = Edur(tn)− Edur(t)
s = tn − t

D = 1− ∆
s

In order to estimate D for each disengage task, we require a set of training
examples that do not include disengagements, as well as a small set that do. The
former is used to constructEdur(tn) andEdur(t), given the task states at the begin-
ning and end of the disengagement from the latter data set. The no-disengagement
training set is exactly the data set used by particle projection prediction. The fi-
nal estimate of D is an average of the Ds estimated from all examples of a given
disengage task.

Given the duration distribution for the donor task, an estimate of D for the
disengage task, and an estimate of the disengage task’s duration, it is straightfor-
ward to apply the drag to the relevant portion of the donor’s duration distribution
(Fig. 6.13). For each timestep ti of length s, ranging from the beginning of the

108

6.6. Experimental Results

disengage task (time t) to its end (time tn), the [ti + s(1 − D),+∞] segment of
the duration distribution is shifted to the right by sD units, interpolating between ti
and ti + s. This is repeated for i = [0...n], where n is the estimated duration of the
disengage task. Each successive shift is applied to the output of the previous step.
The intuition is that only a fraction (1 −D) of the progress that should have been
made during timestep ti actually is achieved, due to the effect of the disengage
task. This has the effect of stretching or delaying the duration distribution. Note
that only a portion of the duration distribution will be affected: the segment of the
distribution prior to the start of the disengage task will remain untouched, while
that portion after the end of the disengage is simply shifted.

Summary

In many robotic tasks, the act of adding or removing an agent from a team is neither
instantaneous nor free. We have examined several approaches to estimating the
effects of agent disengagement and integration on the team’s ability to progress
towards the goal. Average drag appears to be the preferable solution, although we
have not experimentally evaluated either approach.

6.6 Experimental Results

We have performed two experiments to evaluate duration prediction for mutable
teams and the effects the use of mutable teams have on generated schedules. We
first evaluate the comparative accuracy and efficiency of predicting duration dis-
tributions for mutable team tasks with distribution transfer functions and particle
projection predictions. While distribution transfer functions are much more com-
putationally efficient than particle projection predictions, they are significantly less
accurate, making projection the preferred method for building mutable team dura-
tion distributions. We conclude with an evaluation of the effect of mutable teams
on the optimized schedules generated by ASPEN prior to execution. This allows us
to examine the effects of mutable teams in isolation from live duration prediction
and live task modification. The addition of mutable teams resulted in schedules a
statistically significant 5.65% (33.04 minutes) shorter on average than was achiev-
able otherwise.

109

6. Mutable Teams

6.6.1 Duration Prediction with Mutable Teams

Accuracy

We have evaluated the accuracy of distribution transfer functions and particle pro-
jection predictions, using the Transport task. Transport is the most complex task in
our domain, with the largest state space. We chose 60 initial states to evaluate, scat-
tered throughout Transport’s three-dimensional state space. The two approaches
were used to build predicted duration distributions for each initial state with 1, 2,
3, 4, and 5 scheduled changes in the team profile. Particle projection prediction
was evaluated with 5, 10, 20, 30, 40, and 50 particles.

We used particle projection predictions with 1000 particles as ground truth.
Ideally, we would use the complete projection, in which no subsampling is per-
formed and the entire tree of previously observed states is traversed. Unfortu-
nately, this is computationally infeasible for the Transport task: there are a total
of 660,556 points in the training data set, with an average of 38 included in each
query. A branching factor this high renders complete projection impossible for
more than two team changes.

In order to validate that 1000 particles is sufficiently accurate, we performed
a brief experiment with the Lift task, which is simple enough that the complete
projection can be computed. As can be seen from Fig. 6.14, the accuracy of particle
projection rapidly asymptotes as the number of particles increases (note that the X
axis is a logarithmic scale). While the rate of decrease is in part a function of the
number of changes to the team profile, all of the curves have nearly reached zero
divergence from the complete projection when 1000 particles are available.

As in the experiments evaluating the accuracy of duration prediction for im-
mutable teams (Section 5.7.1), we evaluated the accuracy of the predicted distribu-
tions for the Transport task by computing the Kullback-Leibler (K-L) divergence
(Kullback and Leibler, 1951) between the PDFs of each test distribution and the
corresponding ground truth. As can be seen in Fig. 6.15, distribution transfer func-
tions become progressively more inaccurate as the number of changes in the team
profile increases, and the approximations in the transfer functions are compounded.
In contrast, particle projection prediction is unaffected by the number of changes.
The accuracy of the projected distributions can be adjusted by selecting the num-
ber of particles used, with as few as 30 particles closely approximating the ground
truth.

Efficiency

While particle projection prediction offers significant accuracy gains over distribu-
tion transfer functions, it comes at a corresponding computational cost. Fig. 6.16

110

6.6. Experimental Results

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Particles

K
−

L
 D

iv
e

rg
e

n
c

e
 f

ro
m

 C
o

m
p

le
te

 P
ro

je
c

ti
o

n

Accuracy of Particle Projection, Relative to Complete Projection

1 team change

2 team changes

3 team changes

4 team changes

5 team changes

Figure 6.14: The accuracy of particle projection, as compared with the complete
projection, for the simple Lift task. All curves asymptote to zero divergence once
1000 particles are used, validating our use of 1000 particles as ground truth when
experimenting with the more complex Transport task. Note that the X scale is
logarithmic.

plots the average query time as a function of the number of expected changes in
the task’s team. Each point in Fig. 6.16 is the average of 60 queries at initial states
scattered throughout Transport’s state space. As would be expected, the query time
increases linearly with the number of projections or transfers that must be calcu-
lated, and is significantly greater for particle projection, with the slope dependent
upon the number of particles in use. By examining the characteristics of the tasks
in a particular scenario, the designer may select a particle count representing an ap-
propriate compromise between accuracy and speed. As can be seen from Fig. 6.17,
accuracy for this task increases with the particle count, but begins to plateau in the
neighborhood of 20 particles. The results in the remainder of this thesis utilize 25
particles. While optimization of the particle prediction code has been performed,
it may be possible to increase its speed with further work. During scheduling op-
erations, a cache of recently predicted distributions is maintained, lowering the
amortized cost of repeated predictions.

111

6. Mutable Teams

1 2 3 4 5
−1

0

1

2

3

4

5

6

7

8

9

Number of Changes to the Team

K
−

L
 D

iv
e
rg

e
n

c
e

 f
ro

m
 R

e
fe

re
n

c
e

Accuracy of Mutable Team Prediction Methods

Distribution transfer function

Part. proj. (5 particles)

Part. proj. (10 particles)

Part. proj. (30 particles)

Part. proj. (50 particles)

Figure 6.15: As the number of changes to a team (e.g. number of arrivals and de-
partures) increases, the divergence of distribution transfer functions from the true
underlying distribution increases rapidly, while the accuracy of particle projection
prediction is unaffected, with the base accuracy determined by the number of par-
ticles. Note that the projection points are offset along the X axis for clarity, and the
20- and 40- particle data are not plotted.

6.6.2 Effect of Mutable Teams on Initial Plans

We have evaluated the effects of using mutable teams in the optimized plans gen-
erated by ASPEN prior to the start of execution. This experiment does not include
execution of the schedule, as we are isolating the effects of mutable teams. The
complete proactive replanning experiment reported in Chapter 8 evaluates the ef-
fects of mutable teams at execution time, along with live duration prediction, live
task modification, and their interactions.

When used in isolation, mutable teams have a salutary effect on the schedule:
we are able to build schedules on average 5.65% shorter than is possible with im-
mutable teams and the same scenario. In addition to their utility while generating
schedules, mutable teams account for approximately half of the 11.5% reduction
in executed schedule length achieved by proactive replanning in the experiments
of Chapter 8.

112

6.6. Experimental Results

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Number of Changes to the Team

A
v

g
.

T
im

e
 P

e
r

Q
u

e
ry

 (
s

)

Efficiency of Mutable Team Predictions

Part. proj. (50 particles)

Part. proj. (40 particles)

Part. proj. (30 particles)

Part. proj. (20 particles)

Part. proj. (10 particles)

Part. proj. (5 particles)

Distribution transfer function

Figure 6.16: The computational cost of both particle projection prediction and
distribution transfer functions increases with the number of changes, although the
rate of increase for particle projection is much greater, and is determined by the
number of particles.

Scenario

The scenario used in this experiment, as well as the experiments in Chapter 8, rep-
resents activities occurring shortly after a lunar landing: the construction of four
communications arrays, the laying of cable from the arrays to a habitat, and habitat
resupply operations. Five agents are available, three distinct locations are involved,
and eight classes of tasks must be performed (Fig. 6.18, Table 6.2). Some group-
ings of tasks must be performed serially, while others may be placed freely by the
planner. Each task or task group must be performed multiple times, with the repeat
count denoted in the Count column of Table 6.2. In the case of task groups, such
as [Supply Habitat, Stow Supplies], each instance of the group is internally seri-
alized, but the group instances may be scheduled at any time with respect to each
other. 24 cooperative tasks and 11 grouping tasks must be scheduled in all, with
the total task count averaging 87.9 (σ = 5.69) in the mutable team case after join
and move tasks are scheduled. The immutable team condition yields an average
task count of 84.6 (σ = 5.31), the variation resulting from differences in which op-

113

6. Mutable Teams

5 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Particles

K
−

L
 D

iv
e

rg
e

n
c

e
 f

ro
m

 R
e

fe
re

n
c

e

Accuracy of Particle Projection

Figure 6.17: The accuracy of particle projection is determined by the number of
particles used. This plot averages the K-L divergence across all team changes for
each number of particles, using the same data set as Figs. 6.15 and 6.16.

tional roles are filled or left open. A one-way analysis of variance (ANOVA) shows
that this difference is statistically significant (p = 0.000035, F (1, 198) = 17.88).
Agents are again assumed to be homogeneous, and can participate in only one task
at a time. Tasks differ in their initial and ending locations, duration, and available
roles. The tasks are detailed in Table 6.2, while the temporal relationships of the
grouped tasks are noted in Fig. 6.18.

The objective of the scenario is to minimize the executed makespan: that is,
to complete the specified set of tasks in the minimum amount of time. In each
experimental run, ASPEN begins with an empty schedule and a list of the cooper-
ative tasks that must be accomplished. The iterative repair algorithm is executed
until a valid (but unoptimized) schedule is constructed. Once a complete schedule
has been formed, 500 iterations of ASPEN’s heuristic optimization algorithm are
executed, with the final schedule serving as the output of the run (note that no exe-
cution is performed in this experiment). The optimization algorithm will backtrack
to a previous schedule if it has been repeatedly unable to improve the makespan,
allowing it to climb out of local minima (Algorithm 3.4).

114

6.6. Experimental Results

Ta
bl

e
6.

2:
C

om
m

To
w

er
sc

en
ar

io
ta

sk
s

an
d

re
le

va
nt

st
at

is
tic

s.
C

ou
nt

de
no

te
s

th
e

nu
m

be
r

of
tim

es
ea

ch
ta

sk
m

us
tb

e
pe

r-
fo

rm
ed

,w
hi

le
D

ur
at

io
n

fr
om

St
ar

ti
s

th
e

av
er

ag
e

du
ra

tio
n

fo
rt

he
ta

sk
,g

iv
en

th
e

m
in

im
al

se
to

fa
ge

nt
s.

Ta
sk

C
ou

nt
A

ge
nt

s
N

ee
de

d
L

oc
at

io
n

St
at

e
Va

ri
ab

le
s

Pr
og

re
ss

Pe
r

Ti
m

es
te

p

D
ur

at
io

n
fr

om
St

ar
t

(µ
,σ

)

M
ov

e
*

[1
,1

]
St

ar
t:

A
ny

w
he

re
E

nd
:A

ny
w

he
re

D
is

ta
nc

e
re

m
ai

ni
ng

:[
0,

10
0]

R
ec

ov
er

y
pr

og
re

ss
:[

0,
50

]
N

(1
,0
.0

5)
10

6.
98

(1
3.

9)

Tr
an

sp
or

t
4

[1
,3

]
St

ar
t:

L
an

de
r

E
nd

:C
om

m
D

is
ta

nc
e

re
m

ai
ni

ng
:[

0,
60

]
R

ec
ov

er
y

pr
og

re
ss

:[
0,

50
]

N
(0
.5
,0
.1

)
16

9.
92

(6
2.

34
)

L
if

t
4

L
if

t:
[1
,1

]
B

ra
ce

:[
0,

1]
C

om
m

Pr
og

re
ss

:[
0,

1]
N

(0
.0

25
,0
.0

1)
59

.2
8

(3
1.

48
)

A
ss

em
bl

e
4

[1
,2

]
C

om
m

Pr
og

re
ss

:[
0,

1]
Pi

ck
up

:[
0,

5]
N

(0
.0

5,
0.

01
)

24
.4

6
(8

.0
2)

C
on

ne
ct

4
[1
,2

]
C

om
m

C
on

ne
ct

or
s

D
on

e:
[0
,5

]
N

(0
.3
,0
.2

5)
20

.0
0

(5
.1

6)

L
ay

C
ab

le
2

[1
,3

]
St

ar
t:

C
om

m
E

nd
:H

ab
ita

t
D

is
ta

nc
e

re
m

ai
ni

ng
:[

0,
40

]]
Sn

ag
re

co
ve

ry
:[

0,
50

]

N
(m
,0
.1

),
m

=
f

(d
is
ta
n
ce

)
76

.4
3

(2
7.

27
)

Su
pp

ly
H

ab
ita

t
3

[1
,3

]
St

ar
t:

L
an

de
r

E
nd

:H
ab

ita
t

D
is

ta
nc

e
re

m
ai

ni
ng

:[
0,

60
]

B
ox

es
lo

ad
ed

:[
0,

10
]

N
(1
,0
.1

)
84

.8
0

(4
.4

1)

St
ow

Su
pp

lie
s

3
[1
,2

]
H

ab
ita

t
B

ox
es

R
em

ai
ni

ng
:[

0,
10

]
N

(0
.5
,0
.2

5)
22

.5
6

(5
.6

6)

115

6. Mutable Teams

Figure 6.18: The CommTower scenario. The repeat count for each task precedes
it, while the agent bounds for each role follow. The metric for this scenario is the
makespan of the schedule.

The planner represents the location of each agent as one of five discrete states:
three corresponding to the three locations (Lander, Comm, and Habitat), one rep-
resenting an agent in motion (Moving), and one representing a non-moving agent
that is not at one of the three discrete locations (Stranded). The only way to reach
the Stranded state is by departing a moving task (such as Transport) prior to its
completion. When an agent is moved from the Stranded position or moves to join
a task already in motion, the planner applies a simple heuristic to estimate the dis-
tance that the agent must move, in order to schedule a Move task of the proper
duration. This heuristic uses the already-predicted durations of all involved tasks,
fixed coordinates for the three discrete locations, and assumes constant velocities
to estimate the position of stranded robots, as well as where a moving robot will
intercept a moving team. When this scenario is executed in the experiments dis-
cussed in Chapter 8, the executive and simulator track the metric position of each
agent, as well as more refined locations at which each task instance must be per-
formed. The executive inserts additional short moves into the schedule if agents are
not precisely in the correct position. See Chapter 8 for details. We utilize a coarse
model of position in the planner due to the difficulty of representing and reasoning
about exact positions in ASPEN. Instead, our heuristics estimate the agents’ metric
locations when building duration predictions prior to execution, and utilize their
actual locations, as reported by the executive, during execution. In this way, we
are able to efficiently plan using a coarse location representation while implicitly
taking a finer measure into account via our predictions.

This scenario differs from that in Chapter 5 in several ways. Most importantly,
the goal here is to minimize makespan, while in Chapter 5 the objective was to

116

6.6. Experimental Results

maximize reward within a fixed planning horizon. Consequently, this scenario
specifies a fixed set of cooperative tasks that must be performed, while Chapter
5’s scenario describes a set of task types that may be performed in any quantity.
Chapter 5 did not consider temporal constraints between tasks, such as those within
the task groups here (e.g. [Supply Habitat, Stow Supplies]). In addition, optional
roles had a uniform effect on the duration of the task, while in this scenario some
are useful only in particular states (e.g. when recovering from a failure). Finally,
Chapter 5’s scenario did not model position beyond three discrete locations, as
without mutable teams an agent would never complete a task at any other position.

Experimental Conditions

In this experiment, the objective is to generate a schedule with the minimum makespan,
but not to execute it, as we are isolating the effects of mutable teams from the other
components of proactive replanning. We evaluated two experimental conditions:
with and without mutable teams. When mutable teams are allowed, the planner
may schedule agents to join or depart from teams in the middle of a task, and to
participate in any subset of the task’s execution. This provides additional flexibil-
ity to the planner, but will increase the overall number of tasks on the schedule
and the cost of forming duration predictions, with potential consequences for the
computational power required. The search space is expanded tremendously by the
addition of variable arrival and departure times for each agent. We manage the
combinatorics through the use of a suite of heuristics that make stochastic deci-
sions and utilize some simplifying assumptions. Our heuristic suite is discussed
in detail in Section 8.2. When mutable teams are not allowed, the planner must
schedule agents to participate in the entirety of a task: they must join the task at its
start time, and not depart prior to its completion. The planner still has the flexibil-
ity to fill optional roles or leave them vacant, but cannot divide a role slot between
agents or have a role filled only during a portion of the task’s scheduled duration.

We generated 100 optimized schedules in the fashion described above under
each condition, yielding a total of 200 data points. We compared the makespan,
iterations of repair, and total planning time of the two conditions to determine the
effects and costs of mutable teams. One outlier in each data set was discarded
when evaluating makespan, as they fell more than three standard deviations from
the mean. These outliers were likely due to our stochastic optimization heuristics
making a long series of poor optimization decisions.

117

6. Mutable Teams

Mutable Immutable
400

450

500

550

600

650

700

750

p = 0.00008
F(1,196) = 16.14
Mean reduction: 33.04
% reduction: 5.65

M
a

k
e

s
p

a
n

Minimum Makespan Per Run

Figure 6.19: The use of mutable teams (left) results in schedules that are shorter
than otherwise possible (right) by a statistically significant degree. Individual
schedules are plotted as points behind the mean and error bars (at one standard
deviation), and are randomly dispersed along the X axis for clarity.

Data and Discussion

On average, schedules incorporating mutable teams were 5.65% (33.04 minutes)
shorter than those constructed with immutable teams. A one-way analysis of vari-
ance (ANOVA) showed that the effect of mutable teams was significant, with
p = 0.00008 and F (1, 196) = 16.14. Fig. 6.19 plots the final schedules as points,
randomly dispersed along the X axis for clarity, overlaid with the mean and error
bars (at one standard deviation).

Fig. 6.20(a) plots the best schedule found as a function of the number of op-
timization iterations performed. Our approach to optimization (Algorithm 3.4)
caches the shortest conflict-free schedule achieved as optimization progresses, and
reloads it at the end of optimization. As a result, Fig. 6.20(a) plots the average
makespan that would be achieved if optimization were to cease after a given num-
ber of iterations. Each point on each curve is an average of the minimum observed
makespan across all 100 runs after the given number of iterations of optimization.
The clear asymptoting of the curves suggests that while additional improvement
should be possible with more iterations of optimization, we have reached the point
of diminishing returns. Further, Fig. 6.20(b) plots the average advantage of the mu-
table team approach by subtracting the two curves in Fig. 6.20(a). We can see that,
while both approaches improve throughout the 500 iterations, the mutable teams
condition does not make significant gains relative to immutable teams after approx-
imately 100 iterations of optimization. The initial drop, between approximately 5
and 30 iterations, is likely meaningless. The standard deviation of the data for low

118

6.6. Experimental Results

0 100 200 300 400 500

450

500

550

600

650

700

750

M
in

−
to

−
d
a
te

 M
a
k
e
s
p
a
n

Iteration

Mean Minimum Makespan To Date

Mutable

Immutable

(a) The minimum makespan achieved on av-
erage, as a function of the number of op-
timization iterations. Mutable teams con-
sistently outperform immutable, with their
advantage increasing through approximately
100 iterations.

0 100 200 300 400 500
15

20

25

30

35

40

D
if
fe

re
n

c
e

 i
n

 A
v
e

ra
g

e
 M

in
−

to
−

D
a

te
 M

a
k
e

s
p

a
n

s

Iteration

Average Advantage of Mutable Teams To Date

(Immutable − Mutable)

(b) The average advantage of mutable teams,
as a function of the number of optimization it-
erations performed. This is the difference be-
tween the curves plotted in Fig. 6.20(a).

Figure 6.20: Average makespan achieved for plans involving mutable and im-
mutable teams, as a function of the number of optimization iterations.

numbers of iterations is quite high, as it is heavily dependent upon the state of the
schedule after the initial round of repair completes.

From Fig. 6.19 and 6.20, we can conclude that mutable teams provide a signif-
icant improvement in the makespan of the final schedule and that, in this scenario,
100 iterations of optimization are sufficient to achieve the maximal separation be-
tween the mutable and immutable team conditions.

One danger of increasing the flexibility of a planner is that the increased com-
plexity will require additional computation, more iterations of repair or optimiza-
tion, or both. This is exacerbated in the case of mutable teams, as duration predic-
tion becomes significantly more computationally complex. In the case of mutable
teams, each iteration of repair and optimization is individually slower, but far fewer
iterations of repair are necessary. This is a result of the expanded set of repair tech-
niques utilizing mutable teams that the planner may employ. In general, they have
a localized effect on the schedule and create few, if any, additional conflicts when
applied. In contrast, other repair methods affect large portions of the schedule,
potentially creating new, or worsening, existing conflicts.

Fig. 6.21 plots several metrics of interest from this experiment. All reported
p and F values are the result of a one-way ANOVA on the metric in question.
Fig. 6.21(a) and (b) evaluate the cost of constructing the initial, unoptimized,
schedule. Recall that each experimental run begins with an empty schedule and

119

6. Mutable Teams

a list of tasks that must be performed. The planner then repairs the schedule, with-
out optimizing, until it is conflict-free. Fig. 6.21(a) and (b) plot the number of
repair iterations and time needed to do so, respectively. We can see that when mu-
table teams are available, the planner requires on average 320.75 (57.5%) fewer
iterations of repair to construct a valid schedule. The effect of mutable teams on
this measure is statistically significant (p < 0.00001, F (1, 198) = 36.06). How-
ever, each iteration of repair is more time-consuming, resulting in a planner that
utilizes mutable teams requiring nearly the same amount of time to construct the
initial schedule as without them. In fact, the difference in time is statistically in-
significant (Fig. 6.21(b)). The additional repair methods available when mutable
teams are enabled are not inherently more expensive than the core methods. Rather,
the increase in expense largely is a result of the computational complexity of con-
structing a duration prediction for a mutable team. This implies that if our duration
prediction approach were to be optimized, smaller training sets were used, or fewer
particles were used during prediction, mutable teams would provide significant re-
ductions in both the number of repair iterations and the total time required to repair.

The remainder of Fig. 6.21 explores related metrics. Fig. 6.21(c) and (d) are
analogous to (a) and (b), but instead plot the total number of repairs (and time taken
to repair) for the entire run, including both the formation of the initial schedule and
the repair of conflicts created during optimization. These results further support
the conclusions we drew from Fig. 6.21(a) and (b).

Fig. 6.21(e) graphs the end-to-end time needed to move from an empty sched-
ule to a valid, optimized one. Again, the planner is able to make use of mutable
teams with no overall computational penalty, as the reduced number of repair iter-
ations compensate for their individually increased cost, as well as the greater cost
of optimization.

Finally, Fig. 6.21(f) plots the time taken to perform the 500 iterations of opti-
mization, excluding any repair needed to resolve conflicts caused by the optimiza-
tion methods. As expected, the planner requires more time to perform the same
number of optimization iterations when mutable times are available, again due to
the increased complexity of duration prediction.

Our approach to optimization backtracks if progress has not been made for a
given number of iterations, as detailed in Algorithm 3.4. One measure of how
effective the optimization methods are is to evaluate the number of times this back-
tracking occurs. As can be seen in Fig. 6.22, when mutable teams are available,
the planner backtracks an average of 7.07 times. In contrast, 14.5 backtracks occur
during the average run with immutable teams. The effect of mutable teams on the
number of backtracks is significant, with p < 0.00001 and F (1, 198) = 83.60,
implying that optimizations performed with mutable teams are on average more
effective. This is the case because mutable teams allow the planner to more finely

120

6.6. Experimental Results

Mutable Immutable
0

500

1000

1500

In
it
ia

l
R

e
p

a
ir
s

(a): Initial Schedule Iterations

p < 0.00001

F(1,198) = 36.06

Mutable Immutable
0

5

10

15

20

T
im

e
 f

o
r

In
it
ia

l
R

e
p

a
ir

(b): Initial Schedule Time

p = 0.77788

F(1,198) = 0.08

Mutable Immutable
0

1000

2000

3000

T
o

ta
l
R

e
p

a
ir
 I

te
ra

ti
o

n
s

(c): Total Repair Iterations

p < 0.00001

F(1,198) = 172.41

Mutable Immutable
0

50

100

150

200

T
o

ta
l
R

e
p

a
ir
 T

im
e

(d): Total Repair Time

p = 0.27906

F(1,198) = 1.18

Mutable Immutable
100

200

300

400

T
o

ta
l
T

im
e

(e): Total Time

p = 0.47778

F(1,198) = 0.51

Mutable Immutable
60

80

100

120

140

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 O
n

ly

(f): Optimization Time Only

p = 0.00006

F(1,198) = 16.72

Figure 6.21: Mutable teams consistently allow the planner to repair the schedule
with fewer iterations (a, c), with no computational cost (b, d, e). (a) plots the
number of iterations of repair needed to construct an initial, unoptimized schedule,
while (b) graphs the time needed to do so. (c) charts the number of iterations of
repair needed to construct the initial schedule and repair all conflicts introduced by
the optimization process, while (d) depicts the time taken. (e) graphs the total time
taken to construct and optimize the schedule, while (f) plots the time required by
optimization, not including any resulting repairs.

121

6. Mutable Teams

Mutable Immutable
0

5

10

15

20

25

B
a
c
k
tr

a
c
k
s

Instances of Backtracking During Optimization

p < 0.00001

F(1,198) = 83.60

Figure 6.22: The optimization procedure (Algorithm 3.4) backtracks to the best
schedule observed to date if no significant progress is made after a given number
of optimization iterations. A planner utilizing mutable teams does so significantly
fewer times, indicating that optimizations are on average more useful.

allocate available agents: if an agent is idle for a relatively brief period of time, it
temporarily may assist a task with an open optional role, while a planner utilizing
immutable teams would be unable to make use of the idle agent without rearrang-
ing the schedule to allow its participation in the entire task. By using mutable
teams, the planner is able to maximize the utility of the available resources.

This experiment has demonstrated that mutable teams provide significant im-
provements in the generated schedule, while increasing the effectiveness of plan
repair sufficiently to counteract the increased cost of forming duration predictions.
Given further improvements to the efficiency of our approach to duration predic-
tion, mutable teams could well improve all aspects of plan repair and optimization.

6.7 Summary

Mutable teams are those to which agents may be added, or from which agents may
be removed, during the execution of a task, enabling the more fluid and efficient
use of available agents. Mutable teams require a more complex task representation
in the planner in order to encode and track required and optional roles, as well
as a flexible executive. However, the addition of mutable teams greatly increases
the planner’s available menu of options during repair and optimization. Schedules
for our experimental scenario built with mutable teams are significantly shorter
on average than those built without mutable teams, and can be constructed with
the same computational effort. While individual iterations of repair last longer

122

6.7. Summary

as a result of the increased cost of duration prediction, fewer cycles of repair are
necessary, due to the usefulness of mutable teams in repairing conflicts. These
factors offset to yield a system capable of constructing more efficient schedules in
the same amount of time.

123

6. Mutable Teams

124

Chapter 7

Live Task Modification

7.1 Overview

Live task modification is the act of changing some aspect of an executing task,
generally in an attempt to take advantage of an opportunity or alleviate a prob-
lem detected during execution. In this thesis, we address the adjustment of the
team profile of an executing task by the planner. Recall that the team profile is
the schedule of when agents will join and leave the team: by modifying an execut-
ing team’s profile, the planner is able to adjust the arrival and departure times of
agents, as well as add or remove agents from the team. This greatly expands the
set of techniques the planner may utilize when reacting to events as they occur, and
results in a more flexible and robust system.

In contrast, existing planning and execution systems do not allow the planner
to modify tasks once they have been dispatched to the executive. This yields a
clean separation between the domains of the planner and the executive. By instead
granting the planner control over agent allocation at all times, a proactive replan-
ning system is able to more effectively execute schedules in dynamic, uncertain
environments.

To support live task modification, the planner must be able to reason rapidly
about whether to modify executing tasks. If the planner is too slow to respond to
events, the continuing execution of the task may either render the state upon which
the planner is basing its decisions invalid or proceed past the point at which useful
changes could have been applied. A proactive replanner must be able to evaluate
rapidly whether repairs or optimizations should be applied to executing tasks.

A live task modification-enabled executive must accept changes to the team
profile of an executing task. In order to do so, it must be possible for the executive
to retract or modify tasks and constraints that have been dispatched to it by the

125

7. Live Task Modification

planner, a capability that some existing execution systems lack. In addition, the
executive must not make any assumptions about the future availability of agents:
the planner may remove any agent from an executing task at any time.

While live duration prediction and mutable teams may be evaluated in iso-
lation, our formulation of live task modification assumes the existence of mutable
teams. Immutable teams do not support the mid-task addition or removal of agents,
which make this approach to live task modification inapplicable. As a result, we
have not experimentally validated live task modification independently of the other
components of proactive replanning. Instead, it is evaluated in concert with various
combinations in the experiments reported in Chapter 8.

We frame our discussion of live task modification in terms of changes to the
team profile, but the general concept is much broader, encompassing any change
to an executing task made by the planner. This is an open area of research that
encompasses classes of modifications such as changing the parameters or goals of
an executing task, or abandoning tasks already underway.

Live task modification is a relatively simple concept on the surface: transfer a
modicum of control over executing tasks from the executive to the planner. The
challenge is in the details: supporting live task modification requires an agile plan-
ner and a flexible executive. However, the resulting system is able to respond
fluidly to unanticipated events that occur during execution, rapidly adapting the
schedule to accommodate the realities of execution.

7.2 Applicability

Live task modification is applicable to any scenario that supports mutable teams,
although it is most effective when combined with live duration prediction. When
live duration prediction is available, the planner is provided with advance warning
of problems or opportunities resulting from execution anomalies. Without predic-
tion, the planner will often not detect an anomaly early enough for live task modi-
fication to be applied. Live task modification allows a proactive replanning system
to respond directly to execution-time events by reallocating agents between tasks,
rather than being restricted to reworking the portion of the schedule that has not yet
begun execution. This makes a variety of plan repair and optimization techniques
feasible, such as load balancing and arrival time adjustment.

7.2.1 Load Balancing

Load balancing is a natural application of live task modification that allows a proac-
tive replanning system to ameliorate the effects of execution-time problems and

126

7.2. Applicability

take advantage of opportunities as they are presented. Load balancing is the act
of transferring agents between multiple executing tasks in order to approximately
equalize their durations, resulting in a schedule with a shorter makespan. Fig. 7.1
demonstrates this application of live task modification. In this example, task A has
a single role with agent bounds of [1, 3], while task B’s role has bounds of [1, 2].

Figure 7.1: When used in concert with mutable teams, live task modification allows
the more efficient execution of a schedule (d) than otherwise possible (c). If live
duration prediction is also supported, further efficiencies are possible (e).

In the initial schedule (Fig. 7.1(a)), the planner expects the tasks to complete
at the same time, with two agents allocated to B and one to A. Fig. 7.1(b) depicts

127

7. Live Task Modification

one possible result of execution: task A over-runs, while task B under-runs. In
the absence of any elements of proactive replanning, the makespan of the resulting
schedule is less than efficient (Fig. 7.1(c)). However, if mutable teams and live
task modification are available, the agents assigned to task B may be added to
task A once B has completed, partially counteracting the effects of the over-run
(Fig. 7.1(d)). If the system also supports live duration prediction, an even more
efficient execution of the schedule is possible (Fig. 7.1(e)). In this case, if the
over- and under-runs are predicted at point P , the planner may react immediately
by transferring agent 2 from its optional role in task B to an optional role in task
A. This increases the duration of task B from point E to point F , but reduces
the schedule’s overall makespan. Agent 3 may then be added to task A’s final
optional role slot once B completes, further reducing the makespan by a slight but
measurable amount.

7.2.2 Arrival Time Adjustment

Arrival time adjustment is an application of live task modification used to change
a team profile in response to events affecting other tasks. If a task preceding an
agent’s participation in a cooperative task over- or under-runs, the planner may
utilize live task modification to adjust when the agent joins the cooperative task.
This allows the planner to resolve classes of conflicts that are unsolvable without
live task modification.

Figure 7.2: Live task modification is necessary to resolve the conflict that occurs
when a task over-runs, making its agent unable to meet its scheduled arrival time
for a cooperative task.

Fig. 7.2 illustrates a situation in which live task modification is necessary to
resolve a conflict arising from the realities of execution. The initial schedule

128

7.3. Task Modification and the Planner

(Fig. 7.2(a)) involves agent 2 performing task B in parallel with the beginning of
task A, then joining task A once B and a setup action are complete. If task B over-
runs (Fig. 7.2(b)), agent 2’s setup task will overlap its commitment to participate in
taskA. If live task modification is not available, the planner is unable to resolve this
conflict. When task B over-runs, both task A and B have been committed to the
executive, along with their team profiles. Without live task modification, the plan-
ner can neither adjust the team profile of task A, nor abandon task B to give agent
2’s setup task the time it needs. In such a situation, the planner would be forced
to rely on the executive to resolve the problem. This requires the executive to have
the reasoning power to resolve this type of conflict, a function that is properly in
the planner’s domain. However, if live task modification is available, the planner is
able to adjust task A’s team profile by delaying agent 2’s arrival (Fig. 7.2(c)) and
accepting a slightly longer task A as the price of resolving the conflict.

7.2.3 Summary

Our formulation of live task modification is applicable to any domain in which mu-
table teams are available. In general, live task modification is useful whenever it is
possible to adjust executing tasks in a meaningful fashion. Its addition expands the
planner’s domain to include all agent assignments, rather than only assignments to
tasks that have not yet begun execution. This increased power allows the proactive
replanner to respond to execution-time events by directly adjusting the affected
tasks, rather than being limited to compensating for the effects of the events on the
remainder of the schedule. In addition, live task modification is required to resolve
a class of conflicts that may arise if mutable teams are utilized. While live task
modification is of little utility when used in isolation, it magnifies the proactive re-
planner’s flexibility, robustness, and capability when combined with live duration
prediction and mutable teams.

7.3 Task Modification and the Planner

The effective use of live task modification requires a planner that is capable of
rapid, reactive plan repair and optimization. When used as part of a comprehensive
proactive replanning system, state updates will continuously arrive from the exec-
utive, resulting in frequent updates to the duration predictions for executing tasks
that must be incorporated into the planner’s schedule. As problems and opportuni-
ties appear, the planner must be able to recognize them, formulate a response, and
communicate the desired changes to the executive before the state changes upon
which the planner based its reasoning. The time available for reasoning will vary

129

7. Live Task Modification

widely between domains, from a few seconds to minutes or even hours, depending
on how rapidly tasks evolve. Multi-agent domains usually will require responses
within minutes, which often is insufficient time for a planner to build an entirely
new multi-agent plan in a complex domain. As a result, an effective proactive re-
planner must be capable of quickly updating and repairing the near-term portion of
the schedule.

7.3.1 Required Planner Capabilities

First, a live task modification-enabled planner must be capable of supporting live
duration prediction: without ongoing predictions, the planner will not have the
information necessary to formulate an effective response to any execution-time
anomalies. This requires that the planner be able to receive high-frequency1 state
updates from the executive, re-predict the duration distributions for executing tasks,
and update its schedule to reflect the new information. If the planner takes too long
to repair or optimize the plan, it may not receive a new update indicating a problem
or opportunity until it is too late to address. One solution to this problem may be
to interleave state updates and iterations of repair or optimization.

In addition to running repair and optimization routines as time allows, it is
desirable for them to be triggered immediately in response to updates. This would
reduce the lag between the time when an update is generated and the point at which
task modifications are sent to the executive in reply. While a planner may support
live task modification if it only supports periodic revisiting of the schedule, it will
be unable to make full use of live task modification’s potential.

Once the planner has applied a set of updates from the executive, it must rapidly
repair and optimize the near-term schedule, potentially at the cost of a less-optimal
long-term schedule. A variety of approaches to such near-term repair have been
proposed in the literature; we discuss two in the following section.

Finally, in order to make use of the opportunities presented by live task mod-
ification, the planner must be able to reason about the team profiles of executing
cooperative tasks. In many existing planning/execution systems, a task passes be-
yond the purview of the planner once it has been committed to the executive. For a
planner to support live task modification, it must be possible to relax this boundary,
and instead delineate the planner’s domain as the allocation of agents to all tasks,
present or future. Although this is not difficult to do within the planner, supporting
live task modification places significant constraints upon the executive, as will be

1As with the required response time of the planner, the frequency at which state updates arrive
will vary between domains. In order to reduce the lag between when events occur and when the
planner is apprised of them, the frequency of state updates should be rapid enough to ensure that
several updates will arrive within the planner’s minimum response time.

130

7.3. Task Modification and the Planner

discussed in Section 7.4.

7.3.2 Representation

In this section, we discuss the representation in ASPEN and CASPER of the four
capabilities that were identified in the previous section as necessary for live task
modification:

1. Accept task state updates from the executive.

2. Calculate and apply changes to predicted durations.

3. Rapidly repair and optimize the near-term schedule.

4. Reason about team profiles of executing tasks.

The first is supported by nearly all planning systems applicable to multi-agent
coordinated teams: any planner that is unable to receive information from its exec-
utive is poorly equipped to operate in a dynamic, uncertain world. In the CASPER
architecture, the executive updates the planner’s task parameters as state updates
become available. The task parameters are part of ASPEN’s Parameter Constraint
Network (PCN), which encodes dependencies between parameters, and ensures
that changes to a parameter are propagated throughout the network. The PCN is
extremely powerful, and allows the specification of parameter dependencies on
both an inter-task and intra-task basis. By using the state parameters as inputs to
our duration prediction function, we ensure that the prediction is updated whenever
a new state estimate arrives.

For example, Listing 7.1 contains a simplified form of ASPEN’s representa-
tion of the Transport task. Here, the task has a single transporter role, with agent
bounds of [1, 3] (line 2). This version of Transport has two other state variables:
the distance remaining to the goal (line 3) and the amount of work remaining to
recover from a temporary failure, such as becoming mired in the sand (line 4). As
execution proceeds, the executive updates these three state variables, as well as set-
ting curT ime to the current time. The dependency network within Transport (lines
10-18) ensures that the duration prediction is recalculated whenever a state variable
is updated (pred dur, line 14)2. The network then combines the new prediction
with the time already spent on the task to update the task’s overall duration.

Any conflicts introduced by new duration predictions, as well as any opportu-
nities, must be addressed rapidly if the planner is to adjust the profiles of active

2pred dur returns the mean of the predicted duration distribution, as ASPEN utilizes fixed-
duration tasks.

131

7. Live Task Modification

Listing 7.1: A portion of ASPEN’s representation of the Transport task.

1 activity Transport {
2 real numTransporters = [1.0, 3.0, 1.0]; // Agent bounds are [1,3]
3 real distanceRemaining = [0.0, 10000.0, 50.0];
4 real glitchRecovery = [0.0, 10000.0, 0.0];
5 int curTime = [0, 90000];
6 int elapsedTime;
7 int notDone;
8 int remDur; // Remaining duration
9

10 dependencies =
11 notDone <− gt(distanceRemaining, 0.0),
12 elapsedTime <− sub(curTime, start time),
13 remDur <− mul(notDone,
14 pred dur (”Transport” ,
15 ”NumTransporters”, numTransporters,
16 ”DistanceRemaining”, distanceRemaining,
17 ”GlitchRecovery”, glitchRecovery)),
18 duration <− sum(elapsedTime, remDur);
19 };

teams to good effect. The third and fourth capabilities thus are intertwined: it must
be possible to repair and optimize the near-term schedule quickly, which will nec-
essarily involve reasoning about changes to the team profiles of executing tasks.

In our experiments, we take a synchronous approach to simulation, allowing
an arbitrary amount of time to repair the schedule (and perform a fixed number
of optimization iterations)3. However, in a real-time domain, it is desirable to
focus repair and optimization on the near-term portion of the schedule, as planning
time is limited. ASPEN addresses this with the concept of commitment and repair
windows. The commitment window specifies which tasks may not be modified
by the planner, while the repair window specifies the set of tasks whose conflicts
should be repaired. In an unmodified CASPER system, the commitment window
is used to ensure the planner does not modify tasks about to start execution, while
the length of the repair window scales the time needed to repair and the foresight
of the planner.

3The problem of optimally balancing the amount of time spent planning against the lag in the
planner’s response loop introduced by a long plan cycle is a complex tradeoff, and a thorough inves-
tigation is beyond the scope of this thesis.

132

7.4. Task Modification and the Executive

When live task modification is available, we dispense with the commitment
window, as the planner is able to modify the team profile of executing tasks. It is
able to do so by adjusting the duration of committed join tasks and the existence
of uncommitted join tasks associated with committed cooperative tasks. In a real-
time scenario, the responsiveness of the proactive replanner may be adjusted by
changing the length of the repair window, varying the number of repair or opti-
mization iterations performed per cycle, or varying the maximum time that repair
or optimization may consume. Reducing any or all of these variables will result
in a more responsive planner, although the resulting schedules often will be less
efficient.

If live task modification is not enabled, committed tasks may not be modified
in any way (beyond updates to their predicted durations), and all join tasks are
committed when their associated cooperative task is committed.

CASPER and ASPEN’s representation of task parameters allows task state up-
dates to flow smoothly from the executive to the planner, where they trigger a recal-
culation of the affected task’s duration prediction. Our representation of mutable
teams dovetails with ASPEN’s commitment and repair window concepts to allow
our heuristics to repair any resulting conflicts easily or to seize new opportunities
by modifying the team profiles of executing tasks, among other methods. With
the proper selection of repair window size, ASPEN is a fast and reactive planner,
which allows the proactive replanning system to make full use of the advantages
afforded to it by live task modification.

7.4 Task Modification and the Executive

Live task modification places significant constraints on the executive of a proactive
replanning system. In order to support live task modification, the executive must
be capable of tracking the state of executing tasks; providing frequent state updates
to the planner; accepting changes to the team profiles of executing tasks; and sup-
porting mutable teams, as discussed in Section 6.4. In this work, we make use of a
heavily modified version of the single-layer CASPER executive.

7.4.1 Required Executive Capabilities

The executive must be capable of tracking arbitrary state variables for each task in-
stance, such as the distance remaining to the goal, motor temperature, or any other
state that is relevant to predicting the remaining duration of the task. This implies
that some level of the system architecture is able to measure the relevant state and
transmit the measurements to the executive, if the executive is not collecting the

133

7. Live Task Modification

observations directly. In the three-layer planner/executive/behavioral architecture
we utilize, the behavioral layer tracks the task’s current state and relays it to the
executive.

In addition to tracking the state of executing tasks, the executive must be able
to relay updated state to the planner. The ideal update rate will be dependent on
the speed of the planner, the rapidity with which the task state evolves, and the
frequency at which state measurements become available. In order to accomplish
this, the channel of communication between executive and planner must be more
expressive than is commonly the case. Instead of providing relatively simple and
infrequent task completion or failure notices, the executive must be able to transmit
repeated, detailed messages that encapsulate an arbitrary set of state information.

The final requirement placed upon the executive by live task modification is
the ability to accept changes to the team profiles of executing tasks. This is distinct
from requiring that the executive be able to support team profiles (i.e. agents join-
ing and leaving a team), which is discussed in Section 6.4. This is potentially the
most problematic requirement, depending on the nature of the interaction between
planner and executive. If the planner incrementally commits the team profile as
execution reaches each agent’s scheduled start time (e.g. the start time of a join
task, in our representation), then the executive only needs to modify the end-point
of an executing task, along with any constraints in which the end-point is involved.
However, if the planner commits the entire team profile when the cooperative task
starts, the executive must be able to retract or modify portions of the cooperative
task: an agent that had been scheduled to participate may be removed from the
team before it joins in order to address problems with another team.

By supporting live task modification, we remove some potential for the execu-
tive to locally optimize the schedule. When live task modification is not enabled,
the entire team profile (e.g. the cooperative task and all join tasks) is committed
to the executive as a unit. The executive may be able to make use of such firm
knowledge of when additional agents are scheduled to arrive. For instance, it may
be possible to arrange a set of transporter agents around the load so as to attenuate
the effects of an agent joining the team, but this is only possible if the executive is
informed of the scheduled addition. While we demonstrate the effectiveness of live
task modification in Chapter 8, we have not evaluated the cost of removing such
potential for optimization from the executive.

Supporting live task modification requires little additional complexity in the
executive, beyond that required for mutable teams. The executive must be able to
track executing tasks’ state, provide rapid state updates to the planner, and accept
changes to executing tasks. In exchange for a slight increase in complexity, a
proactive replanning system that supports live task modification is significantly
more flexible and robust than one that relies solely upon live duration prediction

134

7.4. Task Modification and the Executive

and mutable teams.

7.4.2 Implementation

In this thesis, we make use of a heavily modified version of the single-layer, single-
threaded CASPER executive, as well as a simulator of our design. In this instanti-
ation of the CASPER architecture, the planner, executive, and simulator run in the
same process. The planner performs a repair and optimization cycle, then commits
tasks scheduled to start to the executive. The executive updates its task list, triggers
one time step of simulation, updates its task state in response, and propagates the
new state to the planner. This loop repeats until the scenario is complete. CASPER
also supports a multi-threaded configuration, in which the executive and simula-
tor run in a separate thread, allowing planning to occur in parallel. However, this
thesis is focused on evaluating the potential utility of proactive replanning, and we
chose to eliminate the variability inherent in a multi-threaded approach. Properly
handling the issues of when to commit tasks and how to ensure that the planner
is not reasoning about tasks that will have completed by the time any changes are
sent to the executive is an active area of research, as discussed in Section 7.3.2.

The CASPER executive tracks the scheduled start and end times of tasks, mon-
itors the values of the resource and state timelines, verifies that an agent is only
executing a single task at a time, and ensures that a task is not considered complete
until the simulation has reached a terminal state. We have implemented a simu-
lator that stochastically simulates the execution of each task via a modified form
of Augmented Transition Networks (Woods, 1970) (Woods, 1973), and have inte-
grated it into the CASPER framework (see Section 8.1.3 for a detailed discussion
of the simulator). The simulator explicitly tracks a variety of state variables, and
makes a subset of them available to the executive. The CASPER executive is able
to track the state of executing tasks by querying the simulator after each step of
simulation.

In this architecture, providing the planner with updated task state values is
simply a matter of setting the appropriate task parameters to the newly observed
values. As discussed in Section 7.3.2, ASPEN’s Parameter Constraint Network
(PCN) then propagates the values as appropriate, triggering any needed recalcula-
tions. CASPER supports the setting of task parameters by the executive in both its
single- and multi-threaded modes of operation.

Our representation of mutable teams (Section 6.3.2) requires the executive only
to support the modification of the scheduled end point of a join task, rather than
the more complex removal of a committed task discussed in Section 7.4.1. Since
the executive maintains a flat schedule of task start and end points, this is easily
supported.

135

7. Live Task Modification

7.5 Summary

The addition of live task modification to a proactive replanning framework greatly
increases the responsiveness and capabilities of the system. Live task modification
allows the planner to adjust executing tasks by transferring agents dynamically
between them, in response to unexpected events that occur during execution. This
enables the optimization and repair of the schedule in ways that are impossible
without live task modification. While it requires a slightly more complex executive
and a fast, reactive planner, the resulting system is capable of responding fluidly to
the realities of execution in a manner not otherwise possible.

136

Chapter 8

Proactive Replanning

Proactive replanning is the prediction of problems (or opportunities) and their early
resolution (or exploitation) by adjusting both the pending schedule and the tasks
currently underway. It implies a much tighter connection between the planner and
executive than has become the norm in planning and execution systems, and re-
sults in a system that is more flexible, reliable, and efficient than is otherwise pos-
sible. We have investigated three aspects of proactive replanning: live duration
prediction, mutable teams, and live task modification. Each has been discussed in
isolation in the preceding chapters; here, we examine how they form a complete
proactive replanning system, and how we have incorporated them into the ASPEN/-
CASPER framework to form a well-integrated, flexible, and efficient planning and
execution system.

To collect the quantity of experimental data necessary to validate proactive re-
planning, we have developed a metric simulator built upon CASPER’s simulation
layer. The simulator, named ROBINSON1, tracks the precise location of all agents,
as well as the start and end points of all tasks. While the planner operates with a
simple, discrete model of position, ROBINSON maintains a much more complex,
continuous world model: while the planner’s view of the world may be approxi-
mately accurate, there will necessarily be discrepancies that must be resolved dur-
ing the process of execution, just as in the real world. Our modified CASPER
executive ensures that agents are properly positioned before they are allowed to
join a team.

Using our simulator, we have evaluated the effects of each of the feasible com-
binations of live duration prediction, mutable teams, and live task modification, to
determine their individual efficacy and the manner in which they interact. These

1The Robinson map projection is based on tables of coordinates, akin to the tables of agent and
task locations that our simulator tracks.

137

8. Proactive Replanning

experiments have been performed in the same multi-agent, highly stochastic, lunar
outpost construction scenario utilized in the evaluation of mutable teams in Chap-
ter 6. The majority of tasks in this scenario include optional roles, with an overall
objective of minimizing the makespan of the executed schedule. Schedules exe-
cuted using proactive replanning are on average 11.5% shorter than those built and
executed without proactive replanning. All three aspects of proactive replanning
contribute to these gains: mutable teams provide a 5% reduction, while live task
modification yields the remaining 6.5%, but only if live duration prediction is also
enabled.

In this chapter, we will first examine the CASPER architecture and the exten-
sions necessary to properly support proactive replanning. The integration of the
various aspects of proactive replanning into ASPEN/CASPER is then discussed,
and a summary of the heuristics used by ASPEN when performing proactive re-
planning is presented. In addition, we provide a detailed description of the use of
several of our heuristics. Finally, we present the results of our experiments and
discuss their implications.

8.1 Architecture

We have implemented proactive replanning by extending the CASPER execution
system, which incorporates the ASPEN planner. The details of ASPEN and CASPER
are discussed in Chapter 3. This section revisits the aspects of the CASPER archi-
tecture relevant to the integration of live duration prediction, mutable teams, and
live task modification, as well as discusses the extensions to ASPEN and CASPER
necessary to support proactive replanning. CASPER consists of planning, execu-
tive, and simulator/hardware interface layers (Fig. 8.1), each of which may com-
municate with the neighboring layer(s).

During the execution of a schedule, each of the three CASPER layers com-
municates with its neighbors, as diagrammed in Fig. 8.1. Prior to execution, the
planner constructs and optimizes the initial plan. Once execution begins, tasks
are dispatched from the planner to the executive as their start times are reached.
The executive, in turn, creates appropriate task models within the simulator, which
tracks the positions and state of all agents, teams, and goals. As the simulator’s
state advances, the executive provides task state updates to the planner, which is
then able to repair or optimize the schedule as warranted, before proceeding to the
next step of execution. Algorithm 8.1 details the high-level procedure followed
during simulated execution.

138

8.1. Architecture

Figure 8.1: The structure and information flow of the CASPER planning and ex-
ecution system, as extended to support proactive replanning. Our extensions are
indicated in italics or dashed lines and boxes.

139

8. Proactive Replanning

8.1.1 Planner: ASPEN

CASPER’s planning layer is ASPEN: an iterative repair-oriented planner, which
utilizes user-supplied heuristics to inform a set of repair and optimization methods.
ASPEN and our extensions to it are described in detail in Section 3.1.

We have developed a suite of heuristics (summarized in Table 8.2) and methods
designed to guide ASPEN’s plan repair and optimization process so as to take
advantage of the opportunities provided by proactive replanning. We examine our
transfer method and the heuristics it utilizes in detail in Section 8.3.

8.1.2 Executive

As discussed in Section 3.2, CASPER provides a relatively simple embedded exec-
utive that we have extended to support our approach to proactive replanning. In the
original executive, tasks deterministically complete when scheduled to do so, and
the planner is informed only of task completion and any resource violations. We
have extended the executive to provide updates to the planner as task state changes
in the simulator, as well as to ensure that tasks do not complete until their simula-
tion completes. In contrast to the basic executive, our extended version monitors
the state of the our simulator (ROBINSON) for each task, ensuring that the planner
does not believe the task to have completed until its simulation completes. Since
simulation is stochastic, the lengths of executed tasks may differ significantly from
their expected durations.

We have also extended the executive to support live task modification, by ac-
cepting changes in the duration of committed join tasks, which are not subject to
live duration prediction2. When executing join tasks, the executive ensures that
they complete at the specified time, although they may start late, due to the agent
starting out of position. If live task modification is enabled, the executive updates
the scheduled completion times of committed join tasks if and when the planner
adjusts them.

Since ROBINSON maintains a much higher-fidelity model of the world than
does the planner, the planner may commit tasks to the executive while the agents
involved are somewhat out of position. To allow the executive to compensate for
such problems, it is empowered to queue any tasks that have been committed for
execution, but are not yet executable, as well as to insert additional repositioning
tasks as necessary. Multi-agent tasks are queued until all agents assigned to the
task at its start time are in position: that is, if a Transport task has two transporters
assigned for its duration, with a third joining 10 time units into execution, the

2A join task that is scheduled to last until the end of its cooperative task will be adjusted appro-
priately as the expected duration of the cooperative task changes.

140

8.1. Architecture

executive will queue the task until the first two agents are in place. If the third
agent is delayed, execution of the task will continue with two agents until the third
connects with the team. No movement task inserted by the executive is reported
to the planner. Instead, the planner indirectly observes them through the lack of
change in the state variables of the queued task(s).

8.1.3 Simulator: TaskSim and ROBINSON

The simulation layer used in this thesis consists of two distinct components: our
TaskSim task modeling and simulation library, and ROBINSON, a heavily modi-
fied version of the CASPER simulator, which makes use of TaskSim to stochasti-
cally model task execution.

TaskSim

Task execution is stochastically modeled within ROBINSON using our TaskSim
library, which is derived from Augmented Transition Networks (Woods, 1970)
(Woods, 1973). The TaskSim models introduce a degree of uncertainty akin to
that found in real-world robotic teams. They model the high- to mid-level de-
tails of a task, including non-terminal failures, and provide task-level state to the
ROBINSON for relay to the executive. For instance, while individual components
of agents (such as manipulators or sensors) are not simulated, events such as a
portion of a load breaking loose are represented.

An Augmented Transition Network (ATN) is a finite state machine in which
arcs have associated tests and effects. A single start and one or more stop states
are specified, controlling where simulation begins and when it completes. An arc
is followed only if the test evaluates to true, at which point the effects are applied.
By convention, in our models exactly one edge’s test condition(s) must evaluate
to true in any given state and time3, ensuring that the model is only in a single
state at a time, unlike Petri Nets (Murata, 1989). Effects may modify the value of
variables or invoke a submachine. This enables recursion, as well as making mod-
els significantly more modular. Our implementation supports the standard ATN
semantics and extends ATNs by supporting random variables from a number of
distributions (e.g. uniform and normal), as well as variable references. The val-
ues of random variables and variable references are reevaluated at every time step.
These extensions to the ATN formalism allow us to introduce stochastic elements
into our model and represent, to an extent, the uncertainty inherent in execution.

3In general, ATNs support effect-less self-transitions; that is, if no arc is true, the state does
not change. In our models, the time variable must be updated as the model is stepped, to allow
ROBINSON to determine when to cease stepping. As a result, we always define self-transitions.

141

8. Proactive Replanning

Figure 8.2: A graphical representation of the TaskSim model for Supply Habitat.
The values of moveStep and boxStep are dependent on the number of agents
assigned to the team. normal(µ, σ) returns a sample from a normal (Gaussian)
distribution with mean µ and standard deviation σ. uniform(a, b) returns a random
value uniformly distributed across the range [a, b].

We will illustrate the capabilities of TaskSim by examining the model for
the Supply Habitat task. A graphical representation of the model is presented in
Fig. 8.2. The model definition for Supply Habitat and all other tasks are provided in
Appendix B.2. The task consists of 1 - 3 agents loading a set of boxes at the lander
site, transporting them to the vicinity of the habitat, and unloading them. During
transit, it is possible for boxes to be dropped; if this occurs, the team must stop and
reload them. The model has three states, corresponding to the loading, transit, and
unloading actions. Filling the two optional roles speeds progress during all phases
of the task. There are three state variables provided as arguments to the model: the
number of agents assigned (NumSuppliers), the distance from the team’s cur-
rent location to the habitat (DistanceRemaining), and the number of boxes
currently loaded (BoxesLoaded). As their values evolve, the executive updates
the associated task parameters in the planner.

Variables internal to the task also may be defined, as well as when the variables

142

8.1. Architecture

may be updated. The values of local variables are only updated by ROBINSON
or by the effects of traversed edges, while the values of reference variables are
updated at each step. Some references, such as moveStep and boxStep in
Fig. 8.2, make use of the uniform or normal functions, which provide a new sample
from a distribution of the appropriate type at each step. This functionality allows
TaskSim models to execute in a stochastic fashion. In this example, the number
of boxes loaded or meters moved during a given execution step (boxStep and
moveStep, respectively) are functions of the number of assigned agents, with
random deviations occurring.

Another reference is droppedBoxes, which contains the number of boxes
that were dropped during the previous execution step. There is a 0.75% chance of
a drop occurring on a given execution step, with a random number of boxes ranging
from 1 to all the loaded boxes falling off if a drop occurs. Non-terminal failures
such as this result in multi-modal duration distributions since the team needs to
stop while re-collecting the dropped boxes, with each mode corresponding to a
different total number of dropped boxes observed during an execution.

The task begins in the Loading state, where it remains until all boxes have been
loaded onto the robot(s). At each step of execution, the tests associated with all
arcs out of the current state are evaluated. The effect clause of the arc whose test
evaluates to true is applied, and the state is updated to the value of the arc’s target
clause. For instance, the Load arc from the Loading state loops back to Loading
until all the boxes are loaded. Note the special tg variable: this represents (global)
time. When the ROBINSON is executing an active TaskSim model, it transitions
along arcs until tg is equal to or greater than the current simulation time. This
allows arcs to occur instantaneously (e.g. the Loaded arc instantly transitions from
Loading to Hauling), or for a single arc to represent a significant passage of time.

Once loading is complete, the model transitions to the Hauling state, where the
team begins moving to the habitat. BoxesLoaded is updated at each step with the
results of the droppedBoxes calculations, and the model transitions back to the
Loading state via the Reload arc if any boxes are dropped. While executing Haul-
ing, the model updates its DistanceRemaining parameter based on the progress
made by the team on each time step. ROBINSON compares the previous and re-
sulting values of DistanceRemaining to determine how far the team has moved,
updating the team’s position in its world model as appropriate.

Once the team has arrived at the habitat, the boxes are unloaded in the same
fashion as they were loaded. The model transitions to the Done state once unload-
ing is complete (i.e. BoxesLoaded = 0), signaling the successful completion
of the task.

Note that TaskSim models are location-agnostic: they have no representation of
the metric location of agents or sites, operating strictly from their parameters. This

143

8. Proactive Replanning

avoids much unnecessary complexity in the models, allowing them to be focused
upon the specifics of the task, while the ROBINSON maintains a detailed world
model. ROBINSON is responsible for providing inputs appropriate to the current
state of the world. For instance, it will calculate the actual distance between the
team and its goal to provide an accurate initial value for the DistanceRemaining
parameter.

TaskSim models also have no representation of mutable teams, instead repre-
senting only the current state of the team. As agents arrive and depart from the
team, the executive will update the appropriate parameters of the model (NumSup-
pliers in the case of Supply Habitat).

ROBINSON: An Extended CASPER Simulator

CASPER’s default simulator is quite simple, supporting deterministic tasks and no
explicit world model. It is intended as a starting point for a domain-specific simu-
lator; we have extended it to provide one for our experimental scenarios, which we
refer to as ROBINSON. ROBINSON maintains a TaskSim model for each execut-
ing task. When a step of execution occurs, arcs are traversed in each model until
the model’s time variable equals or exceeds the new global time. The resulting
state is then provided to the executive, for relay to the planner.

In addition to stochastically modeling the execution of each task, the simulator
maintains a detailed world model, which is used by the executive to determine
when tasks must be delayed or when additional repositioning tasks will need to be
inserted. The world model tracks:

• Fixed locations and sub-locations

• Agent locations

• Team locations

• Role locations for each team

• Start and end locations for each active cooperative task

• A mapping from active setup tasks (e.g. moves) to the cooperative tasks they
are rendezvousing with.

All locations are represented as Cartesian coordinates. The three fixed loca-
tions correspond to the three discrete positions that the planner reasons about (Lan-
der, Habitat, and Comm), while the sub-locations indicate the specific points near
each discrete location at which different tasks take place. For instance, the four

144

8.1. Architecture

Transport tasks all move from the Lander to the Comm site but, since all items
being transported are not collocated, each originates and terminates in a different
sub-location.

ROBINSON tracks the position of each agent, as well as the center of each
team. The agent and team locations are updated as execution proceeds by deter-
mining the distance travelled during the last step, then moving the associated team
or agent along a vector towards their goal. While doing so, the simulator caps agent
velocity at a maximum of 2 meters per second, as a precaution against modeling
errors.

Since robots occupy space, all members of a team cannot be collocated. In-
stead, each type of task defines a formation, with the locations of each role speci-
fied relative to the center of the team. When an agent joins a team or begins a setup
(move) task prior to joining, the executive assigns it to a specific position. The
agent is added to the team only when it reaches its assigned place. Existing agents
do not need to relocate to accommodate new arrivals.

While calculating the movement vector of tasks with well-defined start and
goal locations is simple, this is not the case with Move tasks intended to bring
an agent into position to join a moving cooperative task after it has begun execu-
tion. ROBINSON takes the place of a low-level motion controller, and guides the
moving agent to the correct position by assuming the target task will proceed at a
constant velocity, then finding the earliest point in (x, y, t) space where the moving
agent may meet the team. The simulator calculates the target task’s expected veloc-
ity by querying the executive for the task’s expected end time, then dividing by the
distance between the team’s current position and the location of its goal. ROBIN-
SON recalculates the movement vector during each step of simulation, allowing it
to compensate for inaccurate duration predictions.

8.1.4 Flow of Execution

We are utilizing the single-process variant of CASPER in the experiments reported
here, which ensures synchronous execution of the steps outlined in Algorithm 8.1.
By taking this route, we are able to ensure that the planner has sufficient time for
plan repair and optimization after every step of execution. This approach factors
out the difficult problem of determining how to ensure that the state the planner
is reasoning about has not become excessively out of date. This is an area ripe
for further work, although we note that we are able to construct, repair, optimize,
and execute simulated schedules approximately 10 hours in length in less than 15
minutes. If the speed of execution is slow enough with respect to the speed of
planning and optimization, the planner is easily kept up to date. The true challenge
arises when planning operations and execution are occurring at equivalent speeds.

145

8. Proactive Replanning

Algorithm 8.1 The flow of execution in the proactive replanning-enhanced AS-
PEN/CASPER system, while performing simulation and planning in the same
thread.

1: while A task has not completed execution do
2: Planner: Dispatch tasks scheduled to begin execution at the current time

step to the executive.
3: Executive: Initialize TaskSim models within the simulator for any new

tasks that are executable and any queued tasks that have become executable.
Queue new tasks whose agents are out of position, and create the requisite
move tasks within the executive.

4: Executive: Update task parameters, such as the number of assigned agents,
in the simulator from the planner.

5: Simulator: Step the simulation of the TaskSim models associated with all
active tasks.

6: Simulator: Update the world model based on the changes in the TaskSim
models.

7: Executive: Transmit updated task state from the simulator to the planner,
updating parameters within each task’s Parameter Constraint Network.

8: Planner: If live duration prediction is enabled, update the duration predic-
tions for all executing tasks whose state has changed.

9: Planner: Repair any conflicts in the schedule. The enabling of mutable
teams and/or live task modification affect the available set of choices during
repair.

10: Planner: Perform 5 iterations of optimization, repairing any resulting con-
flicts after each iteration. Again, the enabling of mutable teams and/or live
task modification will affect the available menu of choices.

11: end while

8.2 Heuristics

In addition to extending ASPEN and CASPER to support the various components
of proactive replanning, we developed a large suite of heuristics that guide repair
and optimization. These heuristics allow the planner to efficiently take advantage
of the possibilities afforded by mutable teams, optional roles, and live task mod-
ification without being overcome by the combinatorics of this complex problem.
There are necessarily slight variations in the optimization heuristics between the
scenario presented in Section 5.7.2, where the objective is to maximize reward
within a fixed planning horizon, and the scenario discussed in Section 6.6.2, where
the objective is to minimize the makespan of a specified set of tasks. However, the

146

8.2. Heuristics

heuristics used in all of our experiments remained substantially unchanged.
There are five themes that are incorporated into the majority of the heuristics

in our suite:

• Use stochasticity.

• Utilize predicates to recognize common configurations.

• Make simplifying assumptions and choices.

• Minimize the impact of schedule changes.

• Utilize post-processing.

While none of these techniques are unique to this work, their collective use al-
lowed our proactive replanner to efficiently operate in a combinatoric search space.

8.2.1 Stochasticity

The use of stochasticity is prevalent in ASPEN: many of ASPEN’s default heuris-
tics make extensive use of weighted randomized selection when choosing among a
set of options. We continued and expanded this use of stochasticity throughout our
heuristic suite. Nearly all decisions made by the planner involve a random element,
with weights assigned as appropriate to the scenario. For instance, when selecting
an initial start time for a cooperative task, we weight candidate intervals of time by
the number of idle agents available. This increases the likelihood that the planner
will be able to fill the task’s required roles quickly, with minimal disruption to the
remainder of the schedule. Similarly, when determining which agent should be
added to a team, our heuristics incorporate each agent’s travel time and temporally
proximate commitments into the weights used to randomly select an agent.

By incorporating a random component into our heuristics, we are able to in-
clude many possible approaches in our decision making, even if a number of them
are only rarely applicable. By assigning lower weights to the less general ap-
proaches, they are only sporadically used. However, if the planner reaches a local
minimum or a particularly difficult portion of the search space, it will eventually
select the applicable specialized (or excessively general) approach. For example,
when selecting the start time for a new task, our system randomly selects a time
from the entire planning horizon 1% of the time.

147

8. Proactive Replanning

8.2.2 Predicates

Such an approach is clearly inefficient, as much computation will be wasted in situ-
ations where a specialized, low-probability tactic is needed. We are able to alleviate
much of this inefficiency by using predicates to recognize common configurations
and by adjusting our weighting schemes to bias the search towards methods known
to be effective in similar states, or appropriate to the planner’s current goals. A set
of predicate functions are invoked at a number of points throughout our heuristic
suite, and are used to further focus the planner’s search.

For instance, when optimizing a schedule during execution, opportunities that
occur earlier in the schedule receive greater weight when the planner is select-
ing the next optimization method. This biases the limited amount of optimization
available towards the portion of the schedule that is affected the most by the effects
of execution and has the least time remaining in which to be optimized.

In some cases, the matching of a predicate drives a particular course of ac-
tion in a non-discretionary fashion. During makespan optimization, if there is any
slack in the critical path, the current iteration of optimization is used to pack the
schedule (Section 3.1.3), since the makespan is guaranteed to be reduced. Table
8.1 summarizes the more common predicates used throughout the heuristic suite.

8.2.3 Simplifying Assumptions

The third theme common to our heuristics is their use of simplifying assumptions
and choices. Due to the free placement of tasks on the schedule and the effectively
unlimited number of join tasks that may be associated with a given cooperative
task, the complete tree of potential schedules is vast. In order to address these
combinatorics, our heuristics make a variety of simplifying assumptions that re-
strict the set of options considered, relying on further repair or optimization to
tune the schedule. For example, when evaluating how much time to allocate to a
setup task that must intercept a moving team, we assume constant velocities for all
participants, rather than trying to model the moving team’s execution.

8.2.4 Minimize Impact

We have endeavored to minimize the impact of schedule changes. During our ini-
tial experiments, we found that a single poor decision during schedule repair often
resulted in a cascading series of conflicts that affected large portions of the sched-
ule. This expanded the initial, localized repair attempt into a recalculation of large
portions of the schedule. Such cascades were particularly common when repairing
conflicts in an optimized schedule, where little slack remained. Our iterative deep-
ening approach to repair and our use of limited backtracking (Section 3.1.3) were

148

8.2. Heuristics

Table 8.1: A selection of the predicates utilized in the heuristic suite, and a sum-
mary of what they examine.

Predicate Summary

Calculate
Slack

Calculate the critical path’s slack. If the slack is non-zero during
optimization, a schedule pack is performed (Section 3.1.3).

Find
Useless
Moves

Searches for movement tasks that have no effect. They are then
deleted to simplify the schedule.

Repairing /
Optimizing

Some general heuristics are biased differently based on whether
repair or optimization is underway.

Executing
If execution is underway, many heuristics are biased towards oper-
ating upon tasks that will soon begin execution.

Task Type
The type of a task affects the operations that may be performed,
and which may be most effective. Types include: join, cooperative,
solo, and move.

Conflict
Type

A variety of predicates evaluate details of the current conflict, in-
cluding whether it is an agent oversubscription, an empty required
role, a violated ordering constraint, a short conflict, a setup task
overlapping its target, or overlapping state reservations.

Preference
Type

A variety of predicates evaluate details of the current optimization
preferences, such as whether the planner is optimizing for minimal
makespan or maximal reward.

Timeline
Usage

Calculates the percentage of a timeline that contains activities.
This is used to guide new tasks towards agents that are underuti-
lized.

Missed
Chances

Calculates the sum of the length of open optional roles on critical-
path tasks during which there are agents idle or filling optional
roles in non-critical-path tasks. Used to bias optimization towards
or away from transferring agents into critical-path tasks.

Agent
Flexibility

Calculates the longest interval that an agent is free within a spec-
ified interval. Includes any adjacent free intervals, and serves as
a measure of how much the use of a given agent will constrain a
cooperative task. Used to weight agents when filling a role slot.

149

8. Proactive Replanning

designed to limit conflict cascades and to partially localize the effects of repair and
optimization.

The theme of minimizing impact reoccurs throughout many of our heuristics.
For example, when moving a cooperative task to resolve a conflict, our heuristics
prefer to move it by no longer than needed for an agent to move to the task’s loca-
tion, and no more than the length of the task. This ensures that the task is moved
far enough that an agent may be transferred in, if necessary, but not so far that it
will create many temporal or resource conflicts. When placing new cooperative
tasks, the planner prefers portions of the schedule where more agents are idle. As
mentioned above, this increases the likelihood that the task’s required roles may be
filled without affecting other tasks.

8.2.5 Post-Processing

In addition to the heuristics guiding the planner’s search, we utilize post-processing
extensively. A variety of post-processing routines are run periodically, in order
to apply simplifying or optimizing operations to the schedule. These operations
are able to consider a more global context, and operate upon larger combinations
of tasks than is computationally feasible in the heuristics that are executed more
frequently. A simple example is the removal of useless move tasks: any moves that
either have the same start and end locations, or have no tasks dependent upon the
move task’s effects, are deleted. This reduces the complexity of the schedule, and
increases the efficiency of the planner.

A more complex instance is the minimization of the number of join tasks.
Many of our heuristics add additional join tasks, or modify existing ones. As
repair or optimization proceeds, their number steadily increases, making further
operations more complex. To counteract this growth, we periodically attempt to
minimize the number of join tasks, while not creating any new conflicts. We make
use of four strategies to do so: merging, subsumption, extension, and the removal
of “cross-fades”. If a given agent has multiple join tasks for a role in a given co-
operative task, and the agent has no intervening commitments, the join tasks are
merged into a single join. If a join may be extended to subsume a second join,
the second join is deleted and the first extended. For example, suppose agent 1 is
filling a role for the first half of the task, while agent 2 fills the role for the sec-
ond half (Fig. 8.3(a)). If agent 1 is available during the entire cooperative task,
agent 2’s join task will removed, and agent 1’s will be extended to cover the entire
cooperative task (Fig. 8.3(b)). The third strategy is to extend all joins as far as
possible, subject to task and agent constraints, in order to maximize the amount
of time optional roles are filled. Finally, “cross-fades” are removed. A cross-fade
is the assignment of two agents to two different roles within a cooperative task,

150

8.3. Transferring Agents

Figure 8.3: Two simplifying operations that may be carried out upon cooperative
tasks. In (a) and (b), a join is extended to subsume another, while in (c) and (d)
roles are rearranged to reduce the total number of join tasks.

then swapping the assigned roles (Fig. 8.3(c)). The schedule may be simplified by
assigning each to a single role (Fig. 8.3(d)).

These five themes have informed the design of our heuristics, and are the un-
derpinnings of the entire suite, which is summarized in Table 8.2. The summaries
are necessarily terse, and do not address many special cases: the heuristic suite is
comprised of over 6,500 lines of code, with 13,000 lines of supporting libraries.
Repair and optimization methods included in the generic version of ASPEN that
did not require any proactive replanning-specific heuristics have been omitted.

8.3 Transferring Agents

To further illustrate our heuristic suite, we will detail our Transfer repair and opti-
mization method, and discuss the use of heuristics throughout. The complete suite
is summarized in Table 8.2.

The Transfer method reassigns an agent from one team to another, while in-
serting any necessary setup tasks to reposition the agent appropriately. It is of
use during both schedule repair and optimization. Transferring frequently will re-
duce the duration of the task receiving an additional agent, which can resolve cer-
tain temporal or resource conflicts during repair operations. During optimization,
agents may be transferred into tasks on the critical path that have open optional
roles, thus shrinking the critical path and the schedule’s makespan. Note that the
Transfer method exclusively addresses the movement of an agent from one team

151

8. Proactive Replanning

Table 8.2: Summaries of the heuristic suite used during schedule
repair and optimization. Note that choice points are listed chrono-
logically as they occur in each method.

Method Choice
Point Heuristic Summary

Repair: Move
Culprit
To Move

This is highly dependent on the specific con-
flict being resolved. For instance, if resolving
an agent oversubscription conflict, prefer mov-
ing non-join tasks, as they will have a smaller
impact on the remainder of the schedule.

Duration

For non-join tasks, return the predicted dura-
tion. For join tasks, return the longest interval
during which the role is available and the agent
is free.

Valid
Interval

Select the longest interval during which the role
is available and the agent is free.

Start
Time

Usually return the earliest time in the valid
start time interval; infrequently, return a ran-
dom time from the interval.

Repair: Add
Task
Schema
to Add

Build a list of tasks that could affect the cur-
rent conflict, which will vary with the type of
conflict. For instance, if an agent is out of po-
sition, we prefer adding a move task or a join
task that relocates the agent, while agent re-
quest conflicts are best solved with a join for
the appropriate role. Randomly select a task
from the list according to the flexibility of the
agent.

Culprit
to Delete

If the task being added will make another re-
dundant, delete the redundant task. This may
happen when a join for a moving task is added.

Duration

For non-join tasks, return the predicted dura-
tion. For join tasks, return the longest interval
during which the role is available and the agent
is free.

Continued on Next Page. . .

152

8.3. Transferring Agents

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Valid
Interval

This is dependent upon the conflict being re-
paired. For out-of-position conflicts, the move
task will be inserted just before the task in need
of a different position, while during repair of an
overlap near the end of a cooperative task, the
longest interval for an optional join is preferred.

Start
Time

When adding moves, prefer the latest start time,
to minimize the delay between the end of the
move and the start of the task that needs the
resulting position. For most other situations,
prefer earlier start times to maximize the length
of the join. If a new cooperative task is being
added, weight the available start times by the
number of agents idle (and thus available to the
task) at each time.

Repair: Delete
Culprit
to Delete

If one of the contributing tasks is a useless
move (e.g. it moves nowhere), delete it. Oth-
erwise, weight the tasks by the likelihood that
their removal will resolve the conflict without
creating additional conflicts. Randomly select
a task according to the assigned weights.

Repair: Connect Constraint
Randomly select an open constraint to connect.
This is used to re-establish broken links be-
tween join and cooperative tasks.

Culprit
to
Connect

Given a join, select a cooperative task that over-
laps the join. If no such task with an appropri-
ate open role slot exists, select the nearest co-
operative task with an appropriate slot open.

Repair:
Move and
Connect

—
This method concatenates the Connect and
Move methods, ensuring that the same task is
moved as is connected to.

Continued on Next Page. . .

153

8. Proactive Replanning

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Repair: Transfer
Task
Schema
to Add

Select a cooperative task from the tasks con-
tributing to the conflict, preferring tasks that
start prior to the conflict and have open optional
roles.

Culprit
to
Change
Duration

Select a donor join that overlaps the recipient
task, preferring agents that have few adjoining
commitments.

Task
Schema
to Add

Determine if a setup task is necessary, by exam-
ining the transferring agent’s position timeline.
If so, select the setup task, as well as its start
and goal positions.

Culprit
to Move

If a setup task with the correct goal is available
during the relevant timespan, move it into posi-
tion, rather than adding a new setup task.

Culprit
to Delete

Find any move tasks that overlap or are adja-
cent to the new join, and have the same final
position. They are now redundant, and may be
deleted safely.

Duration

For setup tasks, return the predicted duration
for moving from the agent’s current position to
that of the recipient task. For the new join task,
return the length of the interval during which
the optional role is open immediately follow-
ing the setup task, less any overlap by the setup
task.

Valid
Interval

For setup tasks, select the earliest interval such
that the setup task completes as close to the
start of the longest interval available for the new
join task. For join tasks, return the interval im-
mediately following the setup task.

Start
Time

Return the earliest time from the valid interval.

Continued on Next Page. . .

154

8.3. Transferring Agents

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Repair:
Add and Setup —

This method and associated heuristics are iden-
tical to the Transfer repair method, with the
omission of the donor task, and hence the Cul-
prit to Change Duration choice point.

Repair:
Right Shift

Culprit
To Move

Select the latest task involved in the current
conflict. In addition, calculate the set of suc-
cessor activities to shift by following inter-task
constraints into the future, ignoring any con-
straint with a slack greater than the length of
the conflict.

Start
Time

Select a start time late enough to move the se-
lected task past the end of the current conflict.

Optimize: Move
Culprit
To Move

For 50% of move optimizations, randomly
select a task on the critical path with non-
zero slack to pack, weighting the tasks by
the amount of slack. For the remainder of
optimizations, attempt to extend an optional
join for a cooperative task on the critical path.
Weight the options by the amount that each op-
tional join may be expanded.

Valid
Interval

Return the interval of valid start times that in-
cludes the task’s current start time.

Start
Time

Select the earliest start time in the valid inter-
val.

Optimize:
Delete

Culprit
to Delete

Select a useless move for deletion. A move is
useful if and only if: (1) it changes the value
of its associated position timeline, (2) a task
follows the move that makes use of resulting
position, and (3) the move is not immediately
preceded and succeeded by joins for the same
cooperative task.

Continued on Next Page. . .

155

8. Proactive Replanning

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Optimize:
Change
Duration

Culprit
to
Change
Duration

Select an optional join on the critical path
whose end time may be extended: that is, the
role is open following the end of the join, and
the agent is free. Randomly select from the op-
tions, weighting by the degree by which each
may be extended.

Duration
Select the maximum duration that will not in-
troduce a conflict.

Optimize: Pack —
There are no choice points when packing a
schedule; it is a deterministic operation, as de-
scribed in Section 3.1.3.

Optimize:
Transfer

Task
Schema
to Add

Randomly select a cooperative task from the
critical path, weighting by the inverse of each
task’s slack.

Culprit
to
Change
Duration

Select a donor join that overlaps the recipient
task, preferring agents that have few adjoining
commitments.

Task
Schema
to Add

Determine if a setup task is necessary, by exam-
ining the transferring agent’s position timeline.
If so, select the setup task, as well as its start
and goal positions.

Culprit
to Move

If a setup task with the correct goal is available
during the relevant timespan, move it into posi-
tion, rather than adding a new setup task.

Culprit
to Delete

Find any move tasks that overlap or are adja-
cent to the new join, and have the same final
position. They are now redundant, and may be
deleted safely.

Continued on Next Page. . .

156

8.3. Transferring Agents

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Duration

For setup tasks, return the predicted duration
for moving from the agent’s current position to
that of the recipient task. For the new join task,
return the length of the interval during which
the optional role is open immediately adjacent
to the setup task, less any overlap by the setup
task.

Valid
Interval

For setup tasks, select the earliest interval such
that the setup task completes as close to the
start of the longest interval available for the new
join task. For join tasks, return the interval im-
mediately following the setup task.

Start
Time

Return the earliest time from the valid interval.

Optimize:
Add and Setup —

This method and associated heuristics are iden-
tical to the Transfer optimization method, with
the omission of the donor task, and hence the
Culprit to Change Duration choice point.

Optimize: Swap
Culprit
to Delete

Select a join that is at least partially responsible
for the associated cooperative task having zero
slack. If the cooperative task has zero slack
due to temporal constraints on the cooperative
task, do not consider any joins associated with
it. Randomly select one of the joins, weight-
ing by the likelihood that assigning the join to
another agent will result in the cooperative task
having non-zero slack.

Task
Schema
to Add

Randomly select an agent to assume control of
the join, weighting by the amount of time the
agent is free prior to the start of the join.

Continued on Next Page. . .

157

8. Proactive Replanning

Figure 8.4: Transferring agent 2 from its optional role in T2 to an optional role in
T1 reduces the schedule’s makespan. Doing so requires shortening the donor join
task T4, inserting a setup task T8, and inserting the new join task T7.

Table 8.2 – Continued

Method Choice
Point Heuristic Summary

Culprit
to Delete

If the selected agent is currently performing a
join for a different cooperative task, return it:
the agent performing the first join will assume
control of the second.

Task
Schema
to Add

Return the task type needed for the agent from
the first join to replace the second join.

to another, while Add and Setup enables the addition of an otherwise idle agent to
a team, along with any necessary setup tasks. This somewhat artificial distinction
simplifies our repair and optimization method selection heuristics.

The Transfer method is outlined in Algorithm 8.2; we will illustrate its use
and discuss the heuristics involved by examining the example transfer depicted in
Fig. 8.4. In Fig. 8.4(a), two cooperative tasks are executing in parallel: T1 and T2.
In this example, an agent will be transferred from T2 to T1 in order to reduce the
schedule’s makespan. If at any point in the process a selection cannot be made
(e.g. no donor tasks are available, or all optional role openings are too short), the
method fails, and the schedule is reverted to its state prior to the start of the transfer
method.

158

8.3. Transferring Agents

Algorithm 8.2 A simplified form of the Transfer repair and optimization method.
The complete method also determines if an existing setup task may be moved,
rather than adding a new one, but this logic is omitted for clarity. Heuristics are
invoked on each line that begins with “select”.

1: function transferAgent() do
2: If any step fails, revert to the status quo and return.
3: Select the recipient team.
4: Select the donor join task (and thus the donor team).
5: Select a setup task to add, if needed.
6: Select a task to delete, if any tasks will become redundant.
7: Lift any redundant tasks from the schedule.
8: Lift the donor join task from the schedule.
9: If needed, add a setup task, selecting its duration and start time.

10: Add the appropriate join task to the recipient team, selecting its duration and
start time.

11: Shrink and replace, or delete, the donor join task.
12: Delete any redundant tasks.
13: Propagate the Parameter Constraint Network.
14: end function

The first step of transferring is to select the team to which an agent will be
added; we refer to this team/task as the recipient. To do so, the planner invokes
the Task Schema to Add choice point, which in turn executes one of our heuristics.
During optimization, this heuristic examines one of the schedule’s critical paths
(selected randomly from the set of all critical paths), recording all cooperative tasks
that are either directly on the critical path, or which have a join task on the critical
path. Each cooperative task is weighted by the longest optional role slot available
and the inverse of its slack: we prefer to add agents to tasks that have little slack
otherwise. A cooperative task then is selected randomly from the list, according
to the calculated weights. This stochastic approach is used throughout our suite of
heuristics, allowing the search to be guided towards promising possibilities, while
enabling the occasional selection of less-promising options. This helps to ensure
that the space of possible solutions is explored over time. In Fig. 8.4(a), the critical
path consists of a single cooperative task (T1), greatly simplifying the selection of
the recipient task. During repair, a cooperative task is selected from among those
tasks contributing to the current conflict, with preference given to tasks that start
prior to the conflict and have open optional roles. Transferring agents to such tasks
may reduce the task’s duration sufficiently to resolve the conflict.

159

8. Proactive Replanning

Once the recipient is identified, the planner must find another cooperative task
that may donate an agent, invoking the Culprit to Change Duration choice point,
and another of our heuristics. Here, we are searching for a join task that may be
shortened (or deleted) to allow its agent to transfer to the recipient. We consider all
optional join tasks in the schedule that overlap the recipient task, but are not part
of a cooperative task that is on the critical path. Each potential donor join task is
weighted by the agent’s flexibility. For these purposes, we define flexibility as the
length of an interval containing the potential donor join task that is otherwise free of
commitments. A donor join task then is selected randomly from the list, according
to the calculated weights. By weighting according to flexibility, we prefer agents
that will introduce the fewest additional constraints on the recipient task: this eases
further optimization or repair. In Fig. 8.4(a), if T4 and T5 were both filling optional
roles, T4 would receive a heavier weight, as T6 reduces the flexibility of agent 3.

Once a donor join task (and thus agent) and recipient task have been identified,
the planner is able to determine the type of join task that will add the transferring
agent to the recipient task in the recipient’s open optional role. If the recipient
has more than one open optional role, a role is selected randomly by weighting
them according to the length of time that each role is unfilled, less any existing
commitments for the transferring agent4. When transferring, we would prefer to
add the new agent for a significant length of time, rather than in a small gap between
two other join tasks. If a role is available for less than 5% of the duration of the
cooperative task, it is ignored: on average, such small join tasks result in greater
constraints on the cooperative task than the small reduction in duration warrants.

With the donor and recipient identified, the planner is able to evaluate whether
a setup task will need to be added to the schedule, via another invocation of the
Task Schema to Add choice point and associated heuristics. In our domains, the
only required setup actions are those of movement that serve to position the agent
properly. The schedule contains a position timeline for each agent, which tracks the
current position of the agent throughout the planning horizon (see Section 3.1.3).
By comparing the position requirements of the new join task with the expected
position of the agent during the recipient task, the planner determines if a setup
Move task must be added and, if so, its start and goal positions5. In Fig. 8.4(b), a
Move task (T8) proved to be necessary.

Once all the components of the transfer have been identified, the planner eval-

4Note that in the domains presented here, no cooperative task has more than one type of optional
role. If multiple role types are available within a team, and they have differing effects on the coop-
erative task’s duration, the roles should instead be weighted by the effect on the task’s duration of
adding an agent to the role for the available length of time.

5The complete Transfer method also considers whether an existing Move may be repurposed, or
if an additional task must be added. These calculations are omitted for brevity and clarity.

160

8.3. Transferring Agents

uates if any tasks will become redundant, invoking another of our heuristics via the
Culprit to Delete choice point. Tasks may become redundant when the recipient
task is moving from one location to another; joining the recipient may fortuitously
move the agent into position for its next task, eliminating the need for an existing
Move. Any moves that overlap or are adjacent to the new join and have the same
final position as the new join will be deleted.

At this point, all of the actors in the transfer have been identified. In Fig. 8.4,
the recipient task is T1, the donor join task is T4, the donor team is T2, a setup task
will need to be added (T8), and the new join is of a type appropriate to add agent 2
to an optional role in a cooperative task of type A. In preparation for the addition
of the setup and join task, the planner temporarily removes all reservations by the
donor join task and any redundant setup tasks from the schedule.

If a new setup task is necessary, it is added now (T8 in Fig. 8.4(b)). To do
this, the planner must select its duration and start time, utilizing the Duration,
Valid Interval, and Start Time choice points. The duration of Move tasks is not
adjustable by the planner: instead, it is controlled by our duration prediction algo-
rithms, which take into account the agent’s current position and the position needed
to join the recipient task. The setup task is placed such that it completes just prior
to the longest interval in which the new join task may be placed and starts no earlier
than the beginning of the donor join task (or the current time). If insufficient time is
available between the beginning of the donor join task and the start of the new join
task, the setup task is placed as early as possible, maximizing the length of time the
transferring agent may participate in the recipient task. These calculations become
somewhat complex if the recipient task is moving, as the length of the setup task
affects the location of the recipient team when the setup completes. In Fig. 8.4(b),
the setup task T8 is scheduled to begin at the current time.

Once the setup task, if any, is in place, the planner is free to add the task
representing the transferring agent joining the recipient task (T7 in Fig. 8.4(b)). The
planner again invokes the Duration, Valid Interval, and Start Time choice points
(and thus the relevant domain-specific heuristics) to determine the new join task’s
duration and start time. These heuristics set the new join task’s duration to be equal
to the length of the role slot available in the recipient task, less any overlap by the
setup task and other prior commitments of the agent. The start time is selected in a
similar fashion. In this instance, the selection of the task’s duration and start time
is a straightforward calculation that is performed within our heuristic functions as
a matter of convenience. The choice of duration and start time is significantly more
complicated within other repair and optimization methods.

Finally, the donor join task’s duration is reduced to make room for the setup
task (or the new join, if no setup was required), and it is placed back onto the
schedule. In Fig. 8.4(b), T4 is shortened to end at the current time. If the setup

161

8. Proactive Replanning

completely overlaps the donor join task, the donor is deleted entirely. Any redun-
dant setup tasks are deleted at this point, and the Parameter Constraint Network is
propagated, resulting in the calculation of new duration predictions for the affected
cooperative tasks. The cooperative task (T2) associated with the donor join task
(T4) will increase in duration, while the recipient (T1) will shrink. The increase
in duration of the donating cooperative task may result in conflicts, but they nor-
mally will not involve the critical path, allowing the planner to resolve them while
maintaining the new, shorter makespan.

Note that it is theoretically possible for the planner to oscillate: if the increase
in T2’s duration due to the removal of agent 2 were sufficient to place it on the
critical path, the planner may decide during the next iteration of optimization to
transfer the agent back to T2, since ASPEN’s iterative approach is memoryless. In
practice, we have found that the stochastic nature of our heuristics, and ASPEN’s
stochastic approach to optimization as a whole, is sufficient to avoid such looping.

8.4 Experimental Results

We have performed an experiment in simulation to evaluate the effects of live du-
ration prediction, mutable teams, and live task modification, both in isolation and
in different combinations, to gain insight into how the different aspects of proac-
tive replanning interact. We have evaluated six different combinations of the three
components of proactive replanning as to their effect on the executed schedules’
makespan, as well as several other metrics. Through the use of proactive replan-
ning, we are able to execute schedules on average 11.5% (88.7 minutes) shorter
than otherwise possible, with mutable teams and live task modification contribut-
ing equally to the improvements. While live duration prediction did not directly
reduce makespan in this domain, it enabled live task modification’s effect.

8.4.1 Scenario

These experiments were performed in the context of the same scenario described
in Section 6.6.2. This domain represents a series of activities that might occur
shortly after a lunar landing, as part of the preparations for establishing a base. The
tasks include the construction of four communications arrays, laying cable from
the array farm to the habitat site, and transporting supplies to the habitat, where
they are stowed. Five homogeneous agents are available, three distinct locations
are utilized, and eight classes of tasks must be performed. Some groupings of
tasks must be performed serially (e.g. the components for the communications
arrays must be transported from the lander before they can be assembled), while

162

8.4. Experimental Results

Figure 8.5: The CommTower scenario. The repeat count for each task precedes
it, while the agent bounds for each role follow. The evaluation and optimization
metric for this scenario is the makespan of the schedule. This duplicates Fig. 6.18.

others may be performed at any time (e.g. laying cable from the communications
site to the habitat). All cooperative tasks include at least one optional role. Most
tasks must be performed multiple times, with a total of 24 cooperative tasks to be
scheduled. Due to repositioning tasks and our representation of mutable teams,
the average number of tasks on the executed schedule varies from 83.7 to 92.1
between experimental conditions. Each agent may participate in only one task at a
time. The tasks vary with respect to their starting and ending locations, duration,
available roles, and the effect of filling optional roles. See Fig. 8.5 and Section
6.6.2 (especially Table 6.2) for further details about the tasks and the planner’s
representation of location.

The objective of the scenario is to minimize the executed schedule’s makespan,
while accomplishing the specified set of 24 cooperative tasks. The planner may add
additional Move tasks as necessary, and is free to schedule the tasks in any order,
subject to inter-task temporal constraints. The scheduling horizon is long enough
so as to be effectively infinite: the nominal lengths of the tasks vary from 20 min-
utes to three hours, with a 72-hour scheduling horizon. Agents may move no faster
than 2 meters per second when moving unburdened. The three sites are separated
by 40 - 50 meters and are arranged in an approximately equilateral triangle.

8.4.2 Experimental Design

Common Elements

The high-level flow of a single experimental run, starting with a blank schedule
and a set of cooperative tasks that must be performed, is to:

163

8. Proactive Replanning

1. Iteratively repair the schedule until it is valid (that is, all specified cooperative
tasks have been placed on the schedule, sufficient agents have been assigned
to each task, and no conflicts exist).

2. Perform 300 iterations of optimization, repairing any conflicts via iterative
deepening repair (Algorithm 3.5) after each iteration of optimization.

3. Execute the resulting optimized schedule. After each step of execution:

(a) Repair any conflicts via iterative deepening repair.

(b) Perform 5 iterations of optimization, repairing any conflicts after each
iteration via iterative deepening repair.

In all experimental conditions, duration prediction is performed for all unex-
ecuting tasks, regardless of whether live duration prediction is in effect. This is
necessary to provide principled durations for upcoming tasks, especially those in-
volving mutable teams: there is no valid way to provide fixed durations for tasks
utilizing mutable teams, as the team profile may differ significantly between task
instances. As a result, even the baseline (no live duration prediction, mutable
teams, or live task modification) will incur some computational costs due to pre-
diction of durations for unexecuting tasks.

Note that it is not possible to experimentally evaluate the effect of adding op-
tional roles to tasks without artificially handicapping the baseline (no-optional-
roles) condition. Clearly, if the baseline were to eliminate all optional roles, it
would be possible for the optional role condition to execute the tasks faster. If the
baseline instead required that all (or a specified subset) of the optional roles were
filled, the tasks would require more resources than strictly necessary, reducing the
degree to which tasks could be executed in parallel. As a result, all of the experi-
mental conditions below incorporate optional roles. If mutable teams are enabled,
agents may be committed to a portion of the optional (and required) roles, rather
than the entirety of the role.

Varying Live Duration Prediction

When live duration prediction is enabled, duration predictions are performed as
tasks execute and their state is updated, as described in Section 5.5. When live
duration prediction is disabled, the prediction function instead returns the time
between the task’s current end point and the current time. When input into the
Parameter Constraint Network, this is combined with the time elapsed to return
the task’s current duration. If the task completes prior to its expected end time,
the executive sets a completion parameter, instantly truncating the task’s duration.

164

8.4. Experimental Results

If the task overruns, the executive increments the task’s duration by three time
units, ensuring that the planner does not believe the task to have finished. The
overrunning task’s duration will be repeatedly incremented until it completes.

Varying Mutable Teams

When mutable teams are enabled, the planner is allowed to assign agents to roles
for only a portion of the task’s duration. Required roles still must be completely
filled, although multiple agents may perform different segments of a single required
role. See Section 6.3.2 for complete details on the representation and integration of
mutable teams. Note that when mutable teams are enabled, the computational cost
of duration prediction increases significantly, as our particle projection approach
to predicting the duration of a mutable team (Section 6.5.1) is computationally
expensive.

When mutable teams are disabled, the planner must either fill a role in its en-
tirety with a single agent, or leave the role empty. Optional roles are still available,
but are constrained in this fashion. The planner has a limited ability to trade re-
sources (agents) for time (task duration), but in a much more discrete and less
flexible manner than is possible with mutable teams.

Varying Live Task Modification

When live task modification is enabled, the planner is allowed to adjust the duration
of executing join tasks, adjust the start times and durations for as-yet unexecuting
join tasks of executing cooperative tasks, and add or remove unexecuting join tasks
from executing cooperative tasks. The details are discussed in Chapter 7. Note
that these operations all presuppose the existence of mutable teams: as formulated
here, live task modification is meaningless if mutable teams are not available.

If live task modification is disabled, no join tasks associated with an executing
cooperative task may be adjusted in any fashion by the planner. Note that it is
possible for unresolvable conflicts to arise in this case: if an agent’s task overruns
and comes into conflict with the agent joining the end of an already-executing
cooperative task, the planner has no options available to resolve the conflict. In
these experiments, such conflicts are allowed to remain; the executive will delay
the start of the join task internally until the agent becomes available.

Metrics

While the primary evaluation metric for this experiment was the makespan of the
executed schedule, we also examined several other measures to gain insight into

165

8. Proactive Replanning

how and why proactive replanning improves the makespan. Makespan was the
only metric directly optimized by our approach.

In order to verify the mechanism by which live task modification reduces the
makespan, we evaluate a measure we term missed opportunity. Missed opportunity
measures the optional roles on the schedule’s critical path that were not filled. To
determine the missed opportunity in a schedule, we first find the set of tasks that
lie on the schedule’s critical path. At each point in time, we calculate the minimum
of two values: the number of open optional roles in tasks on the critical path and
the sum of the number of filled optional roles in non-critical tasks and the number
of idle agents. This function is thus an approximate measure of when, and how
many, agents could have been added to the critical path, under the assumption
that agents may move from task to task instantaneously. The missed opportunity
for a schedule is the integral of this function. Due to the instantaneous transfer
assumption, this measure of missed opportunity is an upper bound only. A schedule
properly optimized with respect to makespan should minimize missed opportunity,
as in general assigning agents to non-critical tasks will not affect the makespan.
Live task modification is expected to further reduce missed opportunities, as the
planner may fill the optional roles of executing tasks as needed.

We also evaluate the potential costs of proactive replanning by examining the
amount of plan repair required in each condition, the time needed to construct,
optimize, and execute the schedules, and the amount of duration prediction that is
performed. In Chapter 6, we found that the use of mutable teams simultaneously
reduced the number of required repair iterations and increased the time required
for each iteration, resulting in no significant change in the time needed to construct
and optimize a schedule. In these experiments, we examine the effects of the three
components of proactive replanning on the number of repair iterations and various
decompositions of the time consumed by the planner. Live duration prediction and
live task modification are expected to increase both metrics, due to the cost of pre-
dictions, conflicts introduced by fluctuations in the predictions, and the expansion
of the set of tasks that may be repaired.

Experimental Conditions

Due to the dependence of live task modification on the availability of mutable
teams, all eight combinations of the three components of proactive replanning need
not be evaluated. Instead, a total of six experimental conditions were evaluated,
enumerated in Table 8.3. 100 runs were performed for each condition, with each
run building, optimizing, and executing a schedule, starting from a blank state.
Given the scale of the experiment, the 600 runs were distributed across 23 com-
puters of varying power. Analysis showed that inter-computer variation only had a

166

8.4. Experimental Results

Table 8.3: The six experimental conditions evaluated in this experiment.
Live

Duration
Prediction

Mutable
Teams

Live Task
Modification Notes

No No DNA Baseline.

Yes No DNA
Live duration prediction alone has
little direct effect.

No Yes No
Mutable teams alone account for
half the total improvement.

No Yes Yes
Without live duration prediction,
the effects of live task modification
are limited.

Yes Yes No
Live duration prediction provides
no significant advantages without
live task modification.

Yes Yes Yes
Complete proactive replanning
system.

significant effect on measures of computation time (e.g. time spent repairing). All
timing results are reported from the subset of 452 runs performed on a cluster of 9
identical computers. The runs in this subset are distributed approximately evenly
across the six conditions.

8.4.3 Analysis Procedure and Definitions

In the following section, a variety of metrics are evaluated and analyzed. To clarify
the discussion, we define several terms to unambiguously reference different por-
tions of an experimental run. A run consists of the formation of an initial schedule
from a list of available agents and required tasks, its optimization, and its subse-
quent execution. The actions taken by the planner during a run may be decomposed
in several ways. When decomposing according to phase, we segregate the data ac-
cording to the temporal portion of the run in which it occurred. We define two
phases, and two sub-phases, within a run:

1. Build Initial: The construction and optimization of the initial schedule. This
phase lasts from the beginning of the run until just prior to the start of exe-
cution. It is composed of two sub-phases:

167

8. Proactive Replanning

(a) Construct Initial: The construction of a complete and legal (but un-
optimized) schedule. This is relatively short, and involves only repair
operations.

(b) Optimize Initial: The optimization of the initial schedule, consisting of
both optimization and repair operations.

2. Execute: The execution of the schedule, including repair due to the effects
of execution, optimization, and repair due to the effects of optimization.

In addition, a run may be analyzed with respect to the function being per-
formed: repair, optimization, or prediction. Throughout the analyses below, we
examine different portions of the experimental runs, in order to evaluate specific
hypotheses or to further explain noteworthy results. We use the term planning time
to refer to the total time used by the planning system during a given phase of the
schedule.

When performing each analysis, we utilize a 2x3 two-way ANOVA design. The
presence or absence of live duration prediction (labeled LDP) serves as the two-
level variable (LDP). The combination of mutable teams (abbreviated MT) and
live task modification (abbreviated LTM) provides the three-level variable (MT −
LTM), with the values (∼MT), (MT,∼LTM), and (MT,LTM). We combine
mutable teams and live task modification in this fashion in order to properly capture
the dependence of live task modification on the presence of mutable teams.

The ANOVA analysis yields a p-value, as well as an F-ratio, for the effect of
(LDP) and (MT − LTM) on the response variable in question, as well as any
interaction between (LDP) and (MT − LTM). If the p-value is less than 0.05,
the given variable had a statistically significant effect on the response variable. If
the effect of (MT − LTM) is significant, we perform a post-hoc Student’s t-test,
which examines the three levels of (MT − LTM), and determines which levels
are significantly different. While this provides useful information, it also may mask
interactions with (LDP): if the addition of LDP affects two of the (MT −LTM)
levels in opposite directions, a significant result may appear to be insignificant. If
the interaction between (LDP) and (MT − LTM) is significant, we perform a
Student’s t-test on the 6 combinations of variable levels, again yielding groups of
levels that are not significantly different.

In many of the analyses below, live duration prediction (LDP) and live task
modification (LTM) must be simultaneously present for either to have a signif-
icant effect. We refer to this mutually dependent condition with the shorthand
LDP+LTM.

For each response variable, a figure is provided depicting the mean and stan-
dard error of the data for each of the 6 experimental conditions. Note that the

168

8.4. Experimental Results

standard error provides a measure of the accuracy to which the mean can be de-
termined, and is not a measure of the spread of the underlying data. In addition, a
table of p and F values is provided for the (LDP) and (MT − LTM) variables,
as well as their interaction. Statistically significant p-values are set in bold type.

8.4.4 Data and Analysis

Overall, the complete proactive replanning system is able to decrease the average
makespan by 11.5% and reduce the missed opportunity metric by 60.4%, as com-
pared with the baseline system, all while consuming little more than one second
of computation time per timestep during execution. Mutable teams are responsible
for 5% of the drop in makespan, as well as a 15.5% reduction in repair time and
a 58.6% reduction in the amount of repair needed during optimization. Mutable
teams result in a slight increase in overall planning time, as well as an increased
number of duration predictions, due to their complexity. LDP+LTM provides the
remaining 6.5% decrease in average makespan, while simultaneously increasing
the number of predictions, due to the greater frequency of state updates. Finally,
the use of live duration prediction significantly increases overall planning time, due
to its indirect influence on our optimization strategy.

Makespan

The metric of primary interest is the makespan of the final schedule, and any effects
on it by live duration prediction, mutable teams, and live task modification. Fig. 8.6
plots the mean makespans and standard errors for the six experimental conditions.

The full proactive replanning condition ((LDP,MT,LTM), right of Fig. 8.6)
reduces the average makespan by 11.5% (88.7 minutes), as compared to the base-
line condition ((∼LDP,∼MT), left of Fig. 8.6). MT has a significant effect on
the makespan, while LDP does not have an individual effect. However, LDP acts
as an enabler for LTM: LTM results in a significant change in the makespan only if
LDP is also enabled. We believe from the structure of the underlying system that
LDP catalyzes LTM: the planner cannot effectively modify executing tasks without
updated predictions of their expected durations. However, we note that the statis-
tical analysis does not allow us to prove or disprove this theory: from a statistical
perspective, it is equally likely that LTM is catalyzing LDP.

Analysis of the makespan data reveals that the (MT−LTM) variable has a sig-
nificant effect on the final makespan (Table 8.4). A post-hoc Student’s t-test within
the (MT−LTM) variable determined that a significant difference existed between
all three levels. From this, we are able to state that MT and LTM individually have
statistically significant effects on the schedule’s makespan. Note that the signifi-

169

8. Proactive Replanning

Figure 8.6: The means and standard errors of the final schedule’s makespan for
each of the six experimental conditions. See Table 8.4 for ANOVA analysis.

Table 8.4: ANOVA analysis results for the makespan of the executed schedule.

Metric (LDP)
F (1, 599)

(MT − LTM)
F (2, 598)

Interaction
F (2, 598)

Executed Makespan
Fig. 8.6

p = 0.1855 p < 0.0001 p = 0.0458

F = 1.7571 F = 11.8500 F = 3.1004

cance of LTM is due solely to the large effect of the (LDP,MT,LTM) condition,
indicating that while LTM has a significant effect, it is only exhibited when in the
presence of LDP. Fig. 8.6 indicates that MT and LDP+LTM contribute approxi-
mately equally to the improvement from the baseline to the (LDP,MT,LTM)
condition (MT reduces makespan by 5%, while adding LDP and LTM yields the
additional 6.5%).

While (LDP) had no significant effect individually, we can see from Fig. 8.6
that it and LTM must be presently simultaneously for either to affect the makespan.
In the absence of LDP, insufficient warning of task overruns is provided for LTM
to transfer in additional agents. If LTM is not present, the planner has a limited

170

8.4. Experimental Results

Table 8.5: ANOVA analysis results for the missed opportunity measure.

Metric (LDP)
F (1, 599)

(MT − LTM)
F (2, 598)

Interaction
F (2, 598)

Missed Opportunity
Fig. 8.7

p < 0.0001 p < 0.0001 p = 0.0002
F = 49.9094 F = 20.4852 F = 858332.9000

ability to respond to the information provided by LDP. This mutually enabling
effect is captured in the analysis by the detection of a significant interaction effect
between the (LDP) and (MT − LTM) conditions.

A post-hoc Student’s t-test on the interaction effect indicated that the following
sets of conditions were mutually significantly different:

• (LDP,MT,LTM)

• ((LDP,∼MT), (∼LDP,∼MT))

• ((∼LDP,MT,LTM), (∼LDP,MT,∼LTM))

This confirms the trends plotted in Fig. 8.6: while LDP does not have an individu-
ally significant effect, its interaction with LTM is significant. This test shows that
the slight difference between (∼LDP,MT,LTM) and (∼LDP,MT,∼LTM)
is not significant, confirming that LDP and LTM must both be present for either to
be effective.

Note that LDP had a significant effect in Chapter 5 due to the characteristics
of that domain. In Chapter 5, the objective was to maximize reward, and a variety
of short, low-reward tasks were available. As a result, LDP allows the planner to
schedule short tasks as gaps in the schedule are predicted. This results in LDP hav-
ing a direct effect on the reward earned. In contrast, when minimizing makespan,
LDP primarily provides advance warning of over- or under-runs. Without LTM,
the planner is not able to directly address these problems and opportunities. LDP
alone would have a more significant effect in a real-time scenario, as the advance
warning would result in not only opportunities, but additional time to repair or op-
timize the schedule. The increased repair and optimization time is not a factor in
these experiments, as we allow sufficient time between steps of execution to repair
any conflicts and perform 5 optimizations per timestep.

Missed Opportunities

Missed opportunity is another metric of interest, and provides a conservative and
approximate measure of how often the planner failed to fill optional roles on the

171

8. Proactive Replanning

Figure 8.7: The means and standard errors of the missed opportunity metric for
each of the six experimental conditions. See Table 8.5 for ANOVA analysis.

critical path. Fig. 8.7 plots the mean missed opportunity for each of the six exper-
imental conditions. (LDP) had a significant effect on missed opportunity, as did
the (MT −LTM) variable (Table 8.5). LDP’s effectiveness is due to the planner’s
increased ability to predict the actual critical path, and allocate agents accordingly.
A post-hoc test on the (MT −LTM) variable revealed a significant difference be-
tween the (MT,LTM) level and the ((∼MT), (MT,∼LTM)) levels, indicating
that LTM is the source of the (MT−LTM) effect on missed opportunity, although
much of the improvement is due to the (LDP,MT,LTM) condition. The addi-
tion of LDP+LTM allows the planner to opportunistically fill optional roles on the
critical path as agents become available.

Unsurprisingly, there was a significant interaction between the (LDP) and
(MT − LTM) conditions. As can be seen in Fig. 8.7, missed opportunity is min-
imized when LDP, MT, and LTM are all available. This is due to the synergy
between these components of proactive replanning: LDP provides early warning
of execution-time events, MT provides the means to respond, and LTM provides
the opportunity to do so directly. By granting the planner the ability to more ac-
curately predict the critical path and to transfer agents onto active portions of the
critical path, proactive replanning yields schedules that focus the efforts of the
available agents on the critical portions of the scenario. The complete proactive

172

8.4. Experimental Results

Figure 8.8: The means and standard errors of the number of repair iterations per-
formed during the construction, optimization, and execution of each schedule for
each of the six experimental conditions. See Table 8.6 for ANOVA analysis.

replanning system reduces missed opportunities by 60.4%, as compared with the
baseline system.

While proactive replanning significantly reduces this metric, it does not ap-
proach zero. This is due to the metric’s nature: the calculation assumes that agents
may be instantly repositioned, when in reality a significant amount of setup time
is often required. The missed opportunity remaining in the (LDP,MT,LTM)
condition is largely due to open optional roles on the critical path that are distant
from the available agents, making transfer inefficient.

Iterations of Repair

While proactive replanning provides significant benefits, it adds complexity to the
planning process, with potential efficiency impacts. Fig. 8.8 plots the number of
repair iterations performed under each condition6. This data includes repair per-
formed during all phases of the runs. Fig. 8.9 decomposes the amount of repair
according to the phase of the run in which it occurred. The results from Chapter 6
are mirrored here, with mutable teams significantly reducing the amount of repair

6The number of optimizations performed is solely a function of the schedule’s final makespan:
5 iterations of optimization are performed after each step of execution.

173

8. Proactive Replanning

(a) Iterations of repair required to construct the
initial, unoptimized schedule.

(b) Iterations of repair needed to resolve con-
flicts induced during the optimization of the
initial schedule.

(c) Repair iterations expended in repairing
conflicts created by the effects of execution.

(d) The number of repair iterations required
to resolve conflicts created during optimization
performed while executing.

Figure 8.9: The means and standard errors of the number of repair iterations re-
quired in the four contexts of repair. See Table 8.6 for ANOVA analysis.

174

8.4. Experimental Results

Table 8.6: ANOVA analysis results for iterations of repair, as decomposed by con-
text.

Metric (LDP)
F (1, 599)

(MT − LTM)
F (2, 598)

Interaction
F (2, 598)

Total
Fig. 8.8

p < 0.0001 p < 0.0001 p = 0.0005

F = 36.6261 F = 112.3869 F = 7.6777

Build Initial
Schedule

Fig. 8.9(a)

p = 0.5271 p < 0.0001 p = 0.7505

F = 0.4004 F = 10.6360 F = 0.2871

Optimize Initial
Schedule

Fig. 8.9(b)

p = 0.6942 p < 0.0001 p = 0.7863

F = 0.1547 F = 143.6052 F = 0.2406

Execution
Fig. 8.9(c)

p < 0.0001 p < 0.0001 p < 0.0001

F = 332.2610 F = 56.9743 F = 15.7644

Optimize During
Execution
Fig. 8.9(d)

p = 0.3588 p < 0.0001 p = 0.0372

F = 0.8435 F = 132.1709 F = 3.3091

required, due to the additional flexibility and lower-impact options available to a
mutable teams-enabled planner. Live duration prediction increases the amount of
repair, as advance warning of over- and under-runs is available. In addition, the
conflicts resulting from fluctuations in predicted task durations must be resolved.
When live duration prediction is enabled, live task modification further increases
the quantity of repairs, as the set of tasks that may be repaired is expanded.

While we have taken measures to reduce the impact of the fluctuations (or jit-
ter) introduced by live duration prediction (Section 5.5), there may be more that
can be done to reduce the negative impact of live duration prediction in this do-
main. However, a balance must be maintained between delaying updates to reduce
repair time and ensuring that significant duration changes are presented promptly,
allowing the planner to address them.

The (LDP) and (MT − LTM) conditions both have statistically significant

175

8. Proactive Replanning

effects on the overall amount of repair (Fig. 8.8), as does their interaction (Table
8.6). A post-hoc Student’s t-test on the (MT − LTM) condition revealed that
all three levels are significantly different from one another. This indicates that
mutable teams and live task modification are exerting independent effects upon the
amount of repair. In fact, mutable teams reduce the number of repair iterations by
an average of 1583 iterations, or 39% of the repair required without mutable teams.
This parallels our results from Chapter 6. However, live task modification slightly
offsets this, on average increasing the amount of repair by 415 iterations. This is
a result of the expanded scope that live task modification affords the planner: it is
able to optimize and repair a wider range of tasks, thus requiring more effort.

To gain further insight into the effects of proactive replanning on repair, we
have decomposed the repair iterations according to the phase of the run in which
they occurred (Fig. 8.9). During the construction and optimization of the initial
schedule, only the (MT−LTM) condition had a significant effect (Fig. 8.9(a) and
8.9(b), Table 8.6). In both cases, a post-hoc Student’s t-test on the (MT − LTM)
condition revealed that the (∼MT) level differed significantly from ((MT,LTM)
and (MT,∼LTM)). This indicates that the effect is due solely to mutable teams,
with the most significant effect occurring during the optimization phase. Mutable
teams are more effective in a tightly packed schedule, as they allow more surgical
repair of conflicts, minimizing the repair’s effect on the remainder of the schedule.
While mutable teams are effective during the initial repair stage (Fig. 8.9(a)), the
improvement is less marked, as the schedule is temporally dispersed in this phase.

As expected, (LDP) only has a significant effect on the number of repairs
due to the effects of execution (Fig. 8.9(c), Table 8.6). With frequent updates
to the predicted duration of executing tasks, the planner will be aware of more
conflicts during a run, resulting in more repair. This allows the planner to adjust to
unexpected events early enough in order to ameliorate or take advantage of them.

A post-hoc Student’s t-test of the data presented in Fig. 8.9(c) reveals that
the (MT,LTM) level of the (MT − LTM) condition differs significantly from
((∼MT) and (MT,∼LTM)). This indicates that MT is not of significant use
when repairing execution-induced conflicts. This may appear counterintuitive.
However, the majority of conflicts that arise due to the effects of execution are
relatively short overlaps between tasks requiring the same resources. These are
generally resolved through a simple right-shift of a portion of the schedule (Sec-
tion 3.1.3), which makes little use of mutable teams.

The amount of repair required to resolve conflicts created during mid-execution
optimization (Fig. 8.9(d)) reveals a pattern similar to that observed during the build-
ing of the initial schedule. The (MT −LTM) condition has a statistically signifi-
cant effect (Table 8.6), and a post-hoc Student’s t-test reveals that the (∼MT) level
differs significantly from the (MT,LTM) and (MT,∼LTM) levels. This again

176

8.4. Experimental Results

indicates that mutable teams are the source of the significance: as we observed
during the optimization of the initial schedule, the effectiveness of mutable teams
is most marked in a tightly-packed schedule. A Student’s t-test on the interaction
between the (LDP) and (MT − LTM) variables revealed that the members of
the following groups of conditions do not significantly differ from one another:

1. (∼LDP,∼MT) and (LDP,∼MT)

2. (LDP,MT,LTM) and (∼LDP,MT,∼LTM)

3. (∼LDP,MT,∼LTM), (LDP,MT,∼LTM), and (∼LDP,MT,LTM)

In summary, mutable teams reduce the number of repair iterations required
when used during optimization by 58.6% on average, as the increased flexibility
and decreased impact of repairs allows the repair of conflicts with minimal distur-
bance to the remainder of the schedule. This indicates that the repair advantages
of mutable teams observed in Chapter 6 extend into execution. Live duration pre-
diction mildly increases the required amount of repair due to executing tasks, as
a result of the early warning of over- and under-runs that it provides to the plan-
ner. When used in combination with live task modification, the amount of repair
required during execution increases further, as more tasks may be modified.

Time By Function

In Chapter 6, the decrease in repair iterations due to mutable teams was offset by
an increase in the time required for each repair iteration, resulting in no net change
in the time required. Fig. 8.10(a) plots the total time needed to construct, opti-
mize, and execute the schedules in this experiment. The reduction in repair itera-
tions due to the effect of mutable teams (Fig. 8.8) is largely offset by the increased
cost of each iteration of repair. Measurements are in seconds of user time, as re-
ported by rusage(). Fig. 8.10 also depicts the division of time between repair
(Fig. 8.10(c)) and optimization (Fig. 8.10(d)), as well as the time spent forming du-
ration predictions (Fig. 8.10(b)). The prediction time is measured across the entire
run, and is included in the repair and optimization timing data. The time required
to optimize, even without including the resulting repairs, dominates, indicating that
our optimization methods may be a fruitful area for future efficiency improvements
(Fig. 8.10(d)).

As can be seen from Fig. 8.10(b) and Table 8.7, the addition of mutable teams
increases the overall cost of prediction: we must make use of particle projection
prediction (Section 6.5.1), which is significantly more complex than prediction
for immutable teams. In addition, more predictions are required when mutable

177

8. Proactive Replanning

(a) Total time, from blank schedule to end of
execution.

(b) Time spent predicting duration distributions
during optimization and repair.

(c) Time spent repairing the schedule in re-
sponse to the effects of execution and optimiza-
tion.

(d) Time spent optimizing the schedule, not in-
cluding repair induced by optimization.

Figure 8.10: The means and standard errors of the time spent on different opera-
tions. For timing analysis, we use the subset of 452 runs performed on a cluster of
9 identical computers. Measurements are in seconds of user time, as reported by
rusage(). See Table 8.7 for ANOVA analysis.

178

8.4. Experimental Results

Figure 8.11: More expensive packing optimizations occur with LDP active, result-
ing in a more time-consuming optimization process. See Table 8.7 for ANOVA
analysis.

Table 8.7: ANOVA analysis results for time metrics, as decomposed by function.

Metric (LDP)
F (1, 451)

(MT − LTM)
F (2, 450)

Interaction
F (2, 450)

Total time
Fig. 8.10(a)

p < 0.0001 p = 0.006 p = 0.001
F = 155.1040 F = 5.1720 F = 7.0291

Prediction
Fig. 8.10(b)

p < 0.0001 p < 0.0001 p < 0.0001
F = 146.4133 F = 247.7283 F = 62.1106

Repair
Fig. 8.10(c)

p = 0.0002 p = 0.0102 p = 0.0133
F = 13.8521 F = 4.6378 F = 4.3651

Optimization
Fig. 8.10(d)

p < 0.0001 p < 0.0001 p = 0.0059
F = 260.5608 F = 9.4664 F = 5.1887

Pack Count
Fig. 8.11

p < 0.0001 p < 0.0001 p = 0.0003
F =1348.720 F = 75.1185 F = 8.2337

179

8. Proactive Replanning

teams are available (Fig. 8.13), due largely to the need to evaluate potential agent
transfers. The effect of the (MT − LTM) condition on the time spent predicting
is significant, while a post-hoc Student’s t-test on the (MT − LTM) variable
indicates that all three levels are significantly different. This shows that both MT
and LDP+LTM have significant effects. The increase due to LDP+LTM is a result
of the increased number of predictions made during execution, as updated task state
arrives and the planner evaluates potential transfers (Fig. 8.13(b)).

While predicting the duration of tasks involving mutable teams is more expen-
sive, it does not outweigh the overall reduction in repair iterations (Fig. 8.8) when
considering the overall time needed for repairs (Fig. 8.10(c)). Mutable teams ap-
pear to have a mild effect on the time needed to perform optimization (Fig. 8.10(d)),
due to the increased complexity in reasoning about mutable teams.7 However, the
difference is not statistically significant. The (MT − LTM) condition has a sig-
nificant effect, but a post-hoc Student’s t-test shows that the (MT,LTM) level is
significantly different from the (MT,∼LTM) and (∼MT) levels, indicating that
mutable teams alone do not increase optimization time significantly.

Live duration prediction alone significantly increases the planning time needed
(Fig. 8.10(a)). In addition to the cost of the additional repair needed to resolve
conflicts resulting from changes in predicted durations (Fig. 8.8), live duration pre-
diction incurs the cost of at least one prediction per executing task per timestep8,
amounting to approximately 60,000 additional duration predictions per run9. These
costs could be ameliorated by reducing the frequency of prediction updates. Doing
so allows the system designer to decrease planning time at the cost of increased
latency and an increased possibility of detecting a conflict or opportunity too late
to adjust the schedule appropriately.

The increase in time due to live duration prediction is due in part to an in-
crease in prediction time (Fig. 8.10(b)) and repair time (Fig. 8.10(c)). The increase
in prediction time is due to an increased number of predictions and an increased
cache miss rate: our prediction system caches duration predictions, to avoid un-
necessary recalculations. When live duration prediction is active, more predictions
are needed, from a broader span of states, resulting in not only more prediction
requests, but more prediction calculations. The increase in repair time is due to the
increased number of repair iterations (Fig. 8.8).

More surprising is the large increase in optimization time when live duration

7Note that this is only the time spent reasoning about optimization, and does not include the time
spent repairing any resulting conflicts. As a result, there is no direct connection between Fig. 8.10(d)
and the number of repair iterations in Figs. 8.8 and 8.9.

8More accurately, an additional prediction is required per executing task per state update. In
these experiments, a state update arrives for every executing task at every timestep.

9Due to caching, far fewer predictions are required in our system.

180

8.4. Experimental Results

prediction is active. This is at first counterintuitive: while updating the planner’s
duration predictions may result in conflicts, it does not seem that it should ma-
terially affect the complexity of optimization. It does not do so, but the use of
live duration prediction does influence the choice of optimization heuristics. When
LDP is active, more repair occurs, which has a tendency to slightly disperse the
schedule, introducing slack into the critical path. This results in a packing of the
schedule during the next round of optimization (Section 8.2.2). Packing is an ex-
pensive procedure, as it touches most, if not all, tasks on the schedule, and is itera-
tive, in order to address constraint loops due to mutable teams (Section 3.1.3). As
can be seen in Fig. 8.11 and Table 8.7, significantly more packing operations occur
when live duration prediction is available.

While mutable teams decrease the time needed, live task modification offsets
this gain when live duration prediction is also available, mirroring the number of
repair iterations required (Fig. 8.10(a)).

Applying all three components of proactive replanning results in a 46.7% in-
crease in planning time. While this is significant, we note that we were able to
construct, optimize, and execute (including repair and optimization during exe-
cution) a nominally 10-hour plan in an average of 12.6 minutes. The additional
planning time may or may not affect a given system, depending on the relationship
between execution and planning speed. If time is a limiting factor, the frequency of
duration prediction updates, the number of per-timestep optimizations, or the num-
ber of particles used in particle projection prediction may be reduced (see Section
8.5.2).

In the interest of completeness, we summarize below the results of the relevant
post-hoc Student’s t-tests on the four by-phase views of the timing data sets.

In the total time data (Fig. 8.10(a)), the (LDP) and (MT −LTM) conditions
have statistically significant effects, as well as a significant interaction (Table 8.7).
A post-hoc Student’s t-test on the (MT − LTM) variable shows a significant dif-
ference between the (MT,∼LTM) level and the ((∼MT), (MT,LTM)) levels,
indicating that the reduction due to mutable teams is offset by live task modifica-
tion.

An analysis of the time spent computing duration predictions (Fig. 8.10(b))
reveals that again the (LDP) and (MT − LTM) conditions have statistically
significant individual effects and a significant interaction (Table 8.7). A post-hoc
Student’s t-test on the (MT − LTM) variable indicates that all three levels are
significantly different, while the same analysis applied to the interaction between
(LDP) and (MT − LTM) shows that the only pair of conditions that are not
significantly different are (∼LDP,MT,∼LTM) and (∼LDP,MT,LTM).

The portion of time spent repairing the schedule is plotted in Fig. 8.10(c), and
includes the creation of the initial schedule, as well as the repair of conflicts caused

181

8. Proactive Replanning

Table 8.8: ANOVA analysis results for time metrics, as decomposed by phase of
operation.

Metric (LDP)
F (1, 451)

(MT − LTM)
F (2, 450)

Interaction
F (2, 450)

Construct Initial
Fig. 8.12(a)

p = 0.9088 p < 0.0001 p = 0.9820

F = 0.0131 F = 83.4520 F = 0.0181

Optimize Initial
Fig. 8.12(b)

p = 0.9613 p < 0.0001 p = 0.6326

F = 0.0024 F = 36.2360 F = 0.4584

Execute
Fig. 8.12(c)

p < 0.0001 p = 0.0047 p = 0.0011
F = 171.3615 F = 5.4334 F = 6.9417

Time Per Timestep
Fig. 8.12(d)

p < 0.0001 p < 0.0001 p < 0.0001
F = 367.2523 F = 36.3050 F = 31.0443

by execution-time events and optimization. A 2x3 ANOVA analysis reveals that the
effect of both the (LDP) and (MT − LTM) conditions, as well as their interac-
tion, is statistically significant (Table 8.7).

As in the previous three timing data sets, (LDP), (MT − LTM), and their
interaction all have significant effects on the time spent optimizing the sched-
ule (Fig. 8.10(d), Table 8.7). A post-hoc Student’s t-test on the (MT − LTM)
condition shows that the (MT,LTM) level is significantly different from the
(MT,∼LTM) and (∼MT) levels.

In examining the number of packing optimizations, a Student’s t-test reveals
that all three levels of the (MT −LTM) variable differ to a statistically significant
degree.

Time By Phase

In addition to decomposing the planning time according to the operations being
performed, we have also evaluated our system’s efficiency during the three phases
of a run (Fig. 8.12, Table 8.8). As expected, mutable teams are the only component
of proactive replanning that has an effect during the construction and optimization
of the initial schedule (Figs. 8.12(a) and 8.12(b), respectively). In both cases, the
(MT − LTM) condition has a significant effect, while (LDP) does not. In ad-
dition, a post-hoc Student’s t-test shows that the (∼MT) level differs significantly
from the (MT,LTM) and (MT,∼LTM) levels in both phases of the sched-

182

8.4. Experimental Results

(a) Time spent constructing the initial, unopti-
mized schedule.

(b) Time spent optimizing the initial schedule,
including repairs induced by optimization at-
tempts.

(c) Time spent executing the schedule, includ-
ing optimization and repair.

(d) Average time needed to execute a single
step of the schedule, including optimization
and repair.

Figure 8.12: The means and standard errors of the time spent on the three primary
phases of a run, as well as the average time needed to execute a single step of the
schedule. Measurements are in seconds of user time, as reported by rusage().
See Table 8.8 for ANOVA analysis.

183

8. Proactive Replanning

ule build. This indicates that the difference between (∼LDP,MT,∼LTM) and
(∼LDP,MT,LTM) in Fig. 8.12(b) likely is not statistically significant. These
results confirm those from the previous sections: mutable teams result in greater
repair times (e.g. the repair-only initial schedule construction phase, Fig. 8.12(a)),
but shorter optimization times, even when the resulting repair is included (Fig. 8.12(b)).
The increased number of predictions necessary when operating with mutable teams
(Fig. 8.13(a)) dominates under pure repair, but the flexibility afforded by them im-
proves overall efficiency during optimization-induced repairs (Fig. 8.9(b), Fig. 8.12(b)).

During execution, neither mutable teams nor live task modification have an
appreciable effect on planning time if live duration prediction is not available
(Fig. 8.12(c)). However, if live duration prediction is active, mutable teams sig-
nificantly reduce the time needed, while the addition of live task modification sig-
nificantly increases it. A post-hoc Student’s t-test on the interaction of the (LDP)
and (MT − LTM) variables reveals that the three conditions without LDP are
statistically indistinguishable, while the three that include LDP are mutually dis-
tinct. This parallels the results of our examination of efficiency with respect to
overall repair and optimization (Figs. 8.10(c) and 8.10(d)), as does the statistically
significant increase in time induced by the addition of LDP.

Fig. 8.12(d) plots the time required to execute one timestep of the schedule,
including all repair and optimization time. This factors out the effect of the sched-
ule’s makespan on the overall planning time. It provides no additional insights into
the interaction of the three components of proactive replanning10, but does show
that even the complete proactive replanning system takes little more than one sec-
ond of computation per timestep. Depending on the size of the domain’s timestep,
this may yield true real-time performance.

Duration Prediction

We have also analyzed the effects of the various components of proactive replan-
ning on the number of duration predictions performed, as well as the time spent
forming them. Fig. 8.13 charts the number of predictions made during the build-
ing of the initial schedule (Fig. 8.13(a)) and its execution (Fig. 8.13(b)). While it
may appear that mutable teams cause a massive increase in the amount of predic-
tion, a portion of the difference is due to the caching performed by our prediction
framework. The data graphed in Fig. 8.13 represents cache misses, for which full
duration predictions were computed. If a prediction for a task from a particular
state had been recently computed, the cached result was immediately returned, and

10The post-hoc Student’s t-tests on (MT − LTM) and the interaction of (LDP) and (MT −
LTM) yield identical results to those applied to the execution time data, with the exception that
(LDP,∼MT) and (LDP, MT,∼LTM) do not differ significantly.

184

8.4. Experimental Results

(a) Number of predictions performed during
the construction and optimization of the initial
schedule.

(b) Number of predictions performed during exe-
cution.

(c) Time spent predicting during construction
and optimization of initial schedule.

(d) Time spent predicting during execution of
the schedule.

Figure 8.13: The means and standard errors of the number of predictions performed
during repair and optimization, and the time required, sectioned into those that
occur prior to and during execution. See Table 8.9 for ANOVA analysis.

185

8. Proactive Replanning

Table 8.9: ANOVA analysis results for the various measures of the number of
predictions and time consumed.

Metric (LDP)
F (1, 451)

(MT − LTM)
F (2, 450)

Interaction
F (2, 450)

Num. Predictions:
Build Initial
Fig. 8.13(a)

p = 0.5555 p < 0.0001 p = 0.3955

F = 0.3479 F = 298.4441 F = 0.9290

Num. Predictions:
Execute

Fig. 8.13(b)

p < 0.0001 p < 0.0001 p < 0.0001

F = 297.3936 F = 415.3714 F = 155.2374

Total Pred. Time
During Build
Fig. 8.13(c)

p = 0.6463 p < 0.0001 p = 0.1466

F = 0.2109 F = 168.9134 F = 1.9261

Total Pred. Time
During Execution

Fig. 8.13(d)

p < 0.0001 p < 0.0001 p < 0.0001

F = 156.4994 F = 173.2642 F = 72.0913

the query not included in this data. As the state space for mutable teams is much
larger, but the cache size was held constant, a greater fraction of duration prediction
requests resulted in cache misses, translating into a greater number of predictions,
as well as time required.

In addition to the caching effects, fewer prediction requests overall are required
when mutable teams are not available. Many fewer team profiles are possible, re-
ducing the need for the evaluation of different combinations of agent commitments.
A lack of mutable teams also eliminates the prediction-heavy process of reasoning
about transferring agents, further contributing to the relative paucity of predictions
in the (∼MT) conditions.

Mutable teams clearly increase the number of predictions made during execu-
tion, as do the addition of live duration prediction and live task modification (if
LDP is also available) (Fig. 8.13(b), Table 8.9). While mutable teams expand the
set of team profiles, swelling the prediction space, live duration prediction naturally
results in more predictions throughout execution. As state updates arrive from the
executive, new predictions are computed and integrated into the schedule. The ad-

186

8.4. Experimental Results

dition of live task modification (when LDP is active) yields an additional jump in
the quantity of predictions: much more reasoning about potential agent transfers to
and from executing tasks is performed in a complete proactive replanning system.

A post-hoc Student’s t-test performed on the data plotted in Fig. 8.13(a) clearly
reveals that the (∼MT) level of (MT−LTM) differs significantly from ((MT,LTM)
and (MT,∼LTM)). In Fig. 8.13(b), the differences between all three levels
of (MT − LTM) are statistically significant. A t-test applied to the interac-
tion of the (LDP) and (MT − LTM) variables demonstrates that the only lev-
els not significantly different from the remainder are (∼LDP,MT,LTM) and
(∼LDP,MT,∼LTM).

The total time spent predicting during each phase (Figs. 8.13(c) and 8.13(d))
closely mirrors the number of predictions (Figs. 8.13(a) and 8.13(b)), as would
be expected. Post-hoc Student’s t-tests yield identical results to the corresponding
number of predictions data.

Summary

This experiment has demonstrated that the utility of mutable teams first explored
in Chapter 6 extends into the execution and ongoing repair and optimization of the
schedule, with mutable teams resulting in significantly shorter schedules that are
constructed and executed in less time. Live task modification provides additional
makespan reductions, albeit only when both live duration prediction and mutable
teams are available. This is to be expected: without prior warning and the ability
to modify team profiles, there are few opportunities for live task modification to
improve the schedule. We have shown that the different aspects of proactive re-
planning are both useful in isolation and combine to form an effective replanning
system. The complete system is able to construct and execute schedules that are on
average 11.5% shorter than the baseline system, with 60.4% fewer missed oppor-
tunities. The proactive replanner dynamically reallocates its resources to focus on
the most critical tasks, all well consuming approximately one second of compute
time per timestep executed.

Finally, we note that in the future live duration prediction and live task modifi-
cation will likely prove invaluable in both real-world domains and those involving
deadlines. The advance warning provided by live duration prediction will translate
into additional plan repair and optimization time in real-world scenarios. This ex-
periment was performed in synchronous simulation, eliminating the link between
early warning and additional repair or optimization iterations. In scenarios involv-
ing hard deadlines, the utility of live duration prediction and live task modification
will increase significantly. With these capabilities, the planner should have enough
time to identify potential deadline violations in time to take preventative measures.

187

8. Proactive Replanning

8.5 Domain Exploration

We have shown that proactive replanning is effective in the domain and scenario
discussed above. We have also performed a series of experiments in which we var-
ied elements of the domain, to explore how the domain’s characteristics affect the
usefulness of live duration prediction, mutable teams, and live task modification. In
particular, we varied the number of agents available, the number of particles used
when forming duration predictions, and the length of non-terminal failures. Our
results show that the utility of proactive replanning is enhanced as more agents be-
come available and as the length of failures increases, while even poor predictions
enable a proactive replanner to perform well.

In each of the experiments below, we vary a parameter of the domain. At each
value of the parameter, we perform an experiment identical in form to that reported
in the previous section, with 100 runs per combination of proactive replanning
components. For conciseness, we analyze only the baseline (∼LDP,∼MT) and
complete proactive replanning (LDP,MT,LTM) conditions. When varying the
number of particles, we examine solely the (LDP,MT,LTM) condition.

Plots for each experiment are provided, depicting the mean and standard de-
viations of each response variable, as a function of the variable being controlled
(e.g. number of agents). Note that this differs slightly from the plots in the pre-
vious section, in that we report standard deviation, as opposed to standard error.
Standard deviation provides an estimate of the spread of the underlying data, and
allows us to approximately compare the baseline and proactive replanning curves
below. The data points for the baseline condition are slightly offset from their true
position on the X axis to increase the visibility of the error bars. We also plot
the percentage change in the response variable between the baseline and proactive
replanning cases, where applicable.

8.5.1 Effect of Agent Scarcity

One interesting aspect of multi-agent scheduling is the scarcity of resources (e.g.
agents). If sufficient agents are available to execute all tasks in parallel, the schedul-
ing problem is trivial. However, this is never the case in a realistic domain, with
the quantity of tasks outnumbering the agents by a significant margin. In this ex-
periment, we examined how the reduction in makespan provided by proactive re-
planning changes as more agents become available, varying the number of agents
from 2 to 50. The results reported in Section 8.4 utilize 5 agents.

Fig. 8.14(a) plots the average makespan for the baseline and proactive replan-
ning conditions. As expected, the makespan decreases as more agents become
available, and asymptotes as agents saturate the domain. The increase in makespan

188

8.5. Domain Exploration

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

Number of Agents

E
x

e
c

u
te

d
 M

a
k

e
s

p
a

n

Baseline

Proactive Replanning

(a) The average makespan achieved for the
baseline and complete proactive replanning
conditions, in domains with a range of agents
available. Error bars are the standard deviations
of each sub-experiment.

0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

40

Number of Agents

%
 D

e
lt

a
 i
n

 E
x
e
c
u

te
d

 M
a
k
e
s
p

a
n

(b) The percentage reduction in makespan be-
tween the baseline and complete proactive re-
planning conditions, as a function of the number
of agents in the domain. Error bars are the stan-
dard deviations of the difference, scaled into a
percentage.

0 10 20 30 40 50 60
0

500

1000

1500

Number of Agents

T
o

ta
l

T
im

e

Baseline

Proactive Replanning

(c) The average planning time required for
the baseline and complete proactive replanning
conditions, in domains with a range of agents
available. Error bars are the standard deviations
of each sub-experiment.

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Number of Agents

%
 D

e
lt

a
 i
n

 T
o

ta
l
T

im
e

(d) The percentage increase in planning time
required between the baseline and complete
proactive replanning conditions, as a function
of the number of agents in the domain. Error
bars are the standard deviations of the differ-
ence, scaled into a percentage.

Figure 8.14: The effects of proactive replanning are magnified as more agents
become available.

when more than 35 agents are available is likely due to the assumption on the part
of some of our heuristics that agents are a scarce resource. Heuristics designed
for use in an agent-poor environment may perform suboptimally in an agent-rich
domain.

189

8. Proactive Replanning

Fig. 8.14(b) plots the percentage that the application of proactive replanning re-
duces the makespan, as compared with the baseline. As additional agents become
available, the utility of live task modification and mutable teams increases, as more
agents are available to fill holes in the tasks’ optional roles. The curve appears to
begin asymptoting near the end, although significant noise is present. This asymp-
toting is to be expected: as sufficient agents become available to perform more and
more tasks in parallel, some of the potential for gain via proactive replanning will
be lost.

We also examined the effects of varying the number of available agents on the
overall planning time required for all phases of an experimental run. Fig. 8.14(c)
plots the total time required in the baseline and proactive replanning conditions,
measured in the number of user seconds, according to rusage. Fig. 8.14(d) plots
the percentage of additional time required by the proactive replanning system, as
compared with the baseline. As the number of agents increased, planning time de-
creased, until approximately 15 agents were available. This decrease is due in part
to the reduction in makespan, and in part to the ability of the planner to quickly
find a free agent to resolve a conflict or perform an optimization. After this point,
the complexity introduced by reasoning about ever-larger quantities of agents out-
weighs the ever-decreasing incremental reduction in makespan.

8.5.2 Effect of Number of Prediction Particles

When constructing a proactive replanning system, one variable is the number of
particles used to form duration predictions (Section 6.5.1). In this experiment, we
have evaluated the effect of varying the number of particles on both the makespan
of the executed schedule and the total planning time required. Fig. 8.15(a) plots the
average makespan achieved by a proactive replanning system as the size of the par-
ticle set is varied. The degree of variation is much less than the standard deviation,
implying that the number of particles has little effect on the executed makespan.
In fact, the proactive replanning system is able to achieve nearly identical results
when using distribution transfer functions (horizontal lines in Fig. 8.15(a); Section
6.5.1), which are known to be highly inaccurate. This indicates that even very inac-
curate duration predictions provide useful information, and that there is little utility
in forming extremely precise predictions. Instead, the utility likely flows from the
rapid updating of the predictions in response to the realities of execution.

Fig. 8.15(b) plots the planning time required to construct and execute the sched-
ule, as a function of the number of particles. As expected, this trends upwards as
particles are added. However, as additional particles provide little benefit, the sys-
tem designer likely is best served by the use of a few particles, yielding a faster
system with little, if any, reduction in the quality of the executed schedules.

190

8.5. Domain Exploration

−10 0 10 20 30 40 50 60
500

550

600

650

700

750

800

850

Number of Particles

E
x
e
c
u

te
d

 M
a
k
e
s
p

a
n

(a) The average makespan achieved for the
complete proactive replanning condition, as the
number of particles used to form duration pre-
dictions varies.

−10 0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

Number of Particles

T
o

ta
l

T
im

e
(b) The average planning time required for the
complete proactive replanning condition, as the
number of particles used to construct duration
predictions is varied.

Figure 8.15: Increasing the number of particles used to construct duration pre-
dictions increases the planning time required, with no significant effect on the
makespan. Error bars are the standard deviations of each sub-experiment. The
solid horizontal line is the average when transfer functions are used, while the
dashed horizontal lines represent the standard deviation of the transfer function
sub-experiment.

8.5.3 Effect of Failure Length

If live task modification is to be maximally useful, changes in the predicted dura-
tion of tasks must be long enough that there is time to reposition agents and add
them to the affected task. Non-terminal failures are the primary cause of signif-
icant changes in predicted duration, as the team must take time to recover from
the failure before the task may proceed. In a subset of this domain’s tasks, op-
tional agents significantly increase the rate at which the team may recover from
failures. In these tasks, adding an agent during a failure recovery will reduce the
task’s duration significantly, even if the optional role is filled only for a brief time.

In this experiment, we examine the relationship between proactive replanning
and the delay incurred by failures. The tasks were modified such that the delay
resulting from a failure was a fraction of the task’s duration when no failures oc-
curred. We then varied this fraction from 0.2 to 1.8, and examined the average
makespan and number of missed opportunities of the schedules produced and exe-
cuted in the baseline and complete proactive replanning conditions.

Fig. 8.16(a) plots the average makespan of the two conditions as a function
of the delay fraction. As expected, the average length of a schedule increases as

191

8. Proactive Replanning

0 0.5 1 1.5 2
400

500

600

700

800

900

1000

Delay Fraction

E
x

e
c

u
te

d
 M

a
k

e
s

p
a

n

Baseline

Proactive Replanning

(a) The average makespan achieved for the
baseline and proactive replanning conditions, as
the effect of non-terminal failures is varied. Er-
ror bars are the standard deviations of each sub-
experiment.

0 0.5 1 1.5 2
−10

−5

0

5

10

15

20

25

Delay Fraction

%
 D

e
lt

a
 i
n

 E
x
e
c
u

te
d

 M
a
k
e
s
p

a
n

(b) The percentage reduction in makespan be-
tween the baseline and proactive replanning
conditions, as a function of the effect of a non-
terminal failure. Error bars are the standard de-
viations of the difference, scaled into a percent-
age.

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

900

Delay Fraction

M
is

s
e
d

 O
p

p
o

rt
u

n
it

ie
s

Baseline

Proactive Replanning

(c) The average number of missed opportunities
for the baseline and proactive replanning con-
ditions, as the effect of a non-terminal failure
changes. Error bars are the standard deviations
of each sub-experiment.

0 0.5 1 1.5 2
−20

0

20

40

60

80

100

Delay Fraction

%
 D

e
lt

a
 i
n

 M
is

s
e
d

 O
p

p
o

rt
u

n
it

ie
s

(d) The percentage decrease in missed opportu-
nities realized by the proactive replanning sys-
tem, relative to the baseline, as a function of the
effect of failures. Error bars are the standard
deviations of the difference, scaled into a per-
centage.

Figure 8.16: The effects of proactive replanning are magnified as the impact of
non-terminal failures increases.

failures have greater impact, but the rate of increase is greater in the baseline con-
dition. This is illustrated by Fig. 8.16(b), where we plot the percentage reduction
in makespan realized by moving to a proactive replanning system. As the length of
each delay increases, the opportunity for live task modification to ameliorate its ef-

192

8.6. Conclusions

fects increases, allowing proactive replanning to generate schedules progressively
more efficient than the baseline.

Missed opportunities is a metric that evaluates how well the planner was able to
focus its resources upon the critical set of tasks. As Figs. 8.16(c) and 8.16(d) show,
a proactive replanner is able to eliminate the growth of missed opportunities as the
impact of non-terminal failure is increased. By transferring agents into and out
of active teams, a proactive replanning system may react to failures as they occur,
rather than being forced to either accept their affects or lavish resources upon all
tasks. We do not have an explanation for the sudden dip in missed opportunities
for the baseline case at a delay fraction of 1.0.

This experiment demonstrates that proactive replanning provides benefits even
when the impact of an individual failure is low, and that those benefits scale linearly
with the degree of impact.

8.6 Conclusions

Proactive replanning is conceptually simple, yet powerful: predict problems or op-
portunities, then adjust currently executing tasks and the remainder of the sched-
ule to compensate. We have evaluated the effectiveness of three components of
a proactive replanning and execution system: live duration prediction, mutable
teams, and live task modification. As we have shown in previous chapters, live du-
ration prediction and mutable teams are useful concepts in their own rights. Here,
we have reported the results of experiments evaluating the interaction between
the three components and their overall effectiveness, examining metrics of over-
all schedule makespan, missed opportunities, computational cost, and the number
of repair and optimization iterations necessary. The utility of mutable teams was
reaffirmed, yielding schedules 5% shorter than otherwise possible and reducing to-
tal repair time by 15.5%. When live duration prediction and live task modification
were also available, our proactive replanning system executed schedules 11.5%
(88.7 minutes) shorter than the baseline, demonstrating the efficacy of the proac-
tive replanning approach. In addition, we explored several aspects of the domain
and their effects on the components of proactive replanning. We found that as the
number of agents or the impact of non-terminal failures increase, proactive replan-
ning becomes progressively more advantageous. We have shown proactive replan-
ning to be of worth in two domains while varying a number of their characteristics,
with utility whether its components are used in isolation or in combination. We
have also found that live duration prediction is beneficial, even when only very ap-
proximate predictions are available. When used together, live duration prediction,
mutable teams, and live task modification result in a flexible, robust, and efficient

193

8. Proactive Replanning

replanning system able to construct and execute schedules in a significantly more
efficient fashion.

194

Chapter 9

Conclusions

The thesis of this work is that a proactive replanner will be able to construct and
execute more efficient or value-laden schedules by leveraging live duration predic-
tion, mutable teams, and live task modification. To support this claim, we have
developed algorithms for each of the three components, integrated them into the
CASPER execution framework, and evaluated various aspects of proactive replan-
ning in stochastic simulation. The components of proactive replanning, used either
in isolation or in concert, allow the planner to produce and execute schedules sig-
nificantly more efficient or reward-laden than otherwise possible.

We developed a general approach to the prediction of a distribution across re-
maining durations for tasks, applicable both prior to and throughout execution.
Our approach is nonparametric, allowing it to model accurately the multi-modal
duration distributions characteristic of many construction tasks. We evaluated the
effectiveness of duration prediction in a multi-agent construction scenario in the ab-
sence of optional roles, mutable teams, and live task modification. By employing
live duration prediction, the planner was able to achieve 45% of the improvement
possible if it had complete foreknowledge of the outcome of all tasks. Further, we
discovered that statistically significant improvements were possible with as few as
four runs of training data.

We formulated the concept of optional roles and mutable teams, which allow
the description of coordinated tasks that may make use of a variable number of
agents, and which allow agents to join or leave at will. We explored and evaluated
a variety of approaches to representing these concepts within the ASPEN planner.
Our final representation meshes with ASPEN’s model of tasks to allow the plan-
ner to reason not only about the task as a whole, but also about the commitment
of individual agents to the task. We extended the ASPEN core in several ways to
make the use of mutable teams more efficient, and constructed a suite of heuristics

195

9. Conclusions

that are aware of mutable teams to guide plan repair and optimization appropri-
ately. We evaluated the effect of mutable teams on the pre-execution generation
and optimization of schedules. The addition of mutable teams enabled the planner
to construct schedules a statistically significant 5.65% shorter than possible with
optional roles alone.

We developed the concept of live task modification, and extended ASPEN and
the CASPER executive to support the necessary close coordination. Live task mod-
ification allows the planner to address directly the cause of any conflicts or opti-
mization opportunities arising from execution-time events by adjusting the team
profile of executing tasks. This increases the planner’s ability to ameliorate the
problems, or take advantage of the opportunities, predicted by live duration predic-
tion.

We performed a broad-ranging experiment to evaluate the effects of the three
components of proactive replanning, both in isolation and in all possible combi-
nations, in a makespan-oriented multi-agent construction scenario. The complete
proactive replanning system was able to execute schedules that are a statistically
significant 11.5% shorter than possible with none of the components of proactive
replanning. All three aspects of proactive replanning contributed to this improve-
ment, with mutable teams providing a 5% reduction and live task modification
yielding the remaining 6.5%. Live task modification resulted in shorter schedules
only if live duration prediction was also available. While the components of proac-
tive replanning are individually useful, they show their true potential when used in
concert.

9.1 Future Work

Proactive replanning has proved to a be a fruitful area of research. While we have
explored duration prediction, mutable teams, and live task modification as applied
to relatively large multi-agent schedules in simulation, a number of avenues of
research remain open.

9.1.1 Evaluation on Real-World Hardware in Real Time

While we have evaluated proactive replanning in simulation, and ensured that the
planner’s model of the world diverged from that of the simulator, we have not
addressed all of the challenges involved in deploying a proactive replanning system
on a real-world robotic team. There are three difficulties in doing so: creating
agents capable of performing in mutable teams, performing duration prediction in
a potentially much noisier environment, and ensuring that the planner operates on

196

9.1. Future Work

an up to date model of the world.
Creating a group of robots capable of performing in mutable teams is a far from

trivial effort, requiring capable hardware, flexible low-level controllers, a robust
executive, and an applicable domain. While the Trestle team has made strides
in this direction, performing construction tasks with a team of three heterogeneous
agents (Heger et al., 2005) (Sellner et al., 2006) (Simmons et al., 2007), insufficient
agents are available to form more than one team.

Duration prediction likely will become more difficult in a real-world environ-
ment, as the available state measurements become more indirect and noisy. There
is no guarantee that the most appropriate state values will be measurable, poten-
tially forcing us to form predictions based upon a state vector only loosely related
to the task’s duration. Identifying and measuring, quickly and accurately, the state
variables of greatest utility will be a significant challenge as duration prediction
is applied to live robots. In addition, the quality of the predictions may fall if the
available data is noisier than the tasks we have simulated. While we have added
significant stochasticity to our simulated tasks, real-world execution invariably in-
cludes unforeseen events that may corrupt the available training set. However, we
have shown in Section 5.7.1 that live duration prediction is useful even when train-
ing data is scarce; we would expect similar results for noisy or scarce data in a live
environment.

Finally, ensuring that the planner operates with an up-to-date model of the
world may prove difficult. The fundamental problem is to determine the length of
time to be spent repairing or optimizing the plan: when execution is asynchronous,
the state of the world will evolve as planning proceeds, potentially invalidating the
plan being formed before it can be put into practice. We note that this is unlikely
to be an issue if execution proceeds at a relatively slow pace: we were able to
construct, optimize, and execute notional 10-hour schedules for five agents in under
15 minutes, using a modern, but not cutting-edge, 2.66 GHz processor.

However, for faster-paced domains, or when insufficient computational power
is available, there are several potential strategies that may help to ameliorate this
problem. The first, already available in the CASPER architecture, is to make use
of near- and long-term planning windows, as well as commitment windows. These
windows are specified portions of the schedule within which the planner’s options
are restricted. The commitment window extends from the current time a short
distance along the schedule, and prevents the planner from operating on the tasks
contained within it. The length of the window is chosen based on how long a typical
plan repair or optimization cycle takes, ensuring that the portion of the schedule
about to be executed is not brought into conflict in the course of optimization.
The near-term window is used to constrain plan repair, and runs from the end of
the commitment window a domain-dependent distance into the future. Repairing

197

9. Conclusions

and optimizing the schedule within this window is of paramount importance to
the planner, as this is the portion of the schedule about to enter the commitment
window. The near-term should be repaired and optimized even if conflicts remain
in the long-term window, which encompasses the remainder of the schedule. The
long-term portion of the schedule should be repaired or optimized only as time
allows.

In addition to the use of windows, constraints may be placed on the time spent
optimizing the plan. By caching a valid plan prior to beginning optimization, the
planner always is able to revert to a workable schedule if optimization goes awry.

Finally, we note that the utility of live duration prediction and live task modi-
fication may increase in a real-world scenario, as live duration prediction provides
advance warning of problems or opportunities. In our experiments in simulation,
we perform plan repair and optimization synchronously with execution, ensuring
that sufficient time is available, and eliminating a portion of the utility of live dura-
tion prediction and task modification. In an asynchronous domain, the forewarning
translates into additional time to repair or optimize the schedule, allowing more
iterations to be performed than would be possible with a non-proactive system.

9.1.2 Reducing Repredictions

We evaluated several approaches to reducing the computational cost of duration
prediction, in exchange for reduced accuracy (Sections 5.7 and 8.4). A comple-
mentary approach would be to reduce the number of repredictions performed.
When live duration prediction is available, we currently repredict the duration
distribution of every executing task whenever updated state information becomes
available (e.g. after every step of execution). This is computationally expensive,
but allows the planner to recognize an anomalous execution event in the minimum
amount of time.

The most direct approach would be to only construct new predictions every N
steps of execution, reducing the overall expense of prediction in exchange for an
increase in the average lag between the occurrence of an anomaly and the plan-
ner’s recognition of it. However, it may be possible to decide when to repredict
in a more principled manner. A consequence of our particle projection prediction
method (Section 6.5.1) is that we are able to build an expected distribution across
task state at arbitrary points in the task’s future. Whenever we construct a dura-
tion prediction, it should be possible to cheaply construct a series of distributions
across the task’s state space (S1...SM) ranging from the current time to M steps
into the future. The primary computational cost of duration prediction is querying
for nearby points; projecting them through the training database is quite fast. The
planner then would be able to evaluate the task’s evolving state against St to deter-

198

9.1. Future Work

mine if the cost of forming a new prediction is warranted: if the probability of the
task’s state at time t is less than a threshold in St, an anomaly has likely occurred.

A simplification of this approach would be to predict the average state M
timesteps into the future and linearly interpolate between it and the current task
state. As the task executes, its evolving state would be compared with the inter-
polation, rather than a series of distributions, and a reprediction performed if the
current state deviated significantly or after M steps of execution.

9.1.3 Heterogeneous Agents

In the experiments presented in this thesis, the available agents were homogeneous:
all agents were able to fill any role, with the same efficiency and reliability. As
agents differentiate, duration prediction and mutable teams become simultaneously
more difficult and potentially more rewarding. In the simplest form of heteroge-
neous agents, the agents differ only by which roles they may fill: if two agents are
able to fill a role, they are equally capable of performing it. This is straightforward
to represent in our current formulation of mutable teams: we simply omit the rele-
vant join tasks from the database of potential tasks (recall that a join task is specific
to the combination of cooperative task, role, and agent performing the role).

If agents instead have varying levels of capability, the problem becomes much
more difficult, and more interesting. In such a domain, agents may vary with re-
spect to the way in which filling a particular role affects the team’s efficiency or
reliability. This complication is unlikely to affect mutable teams directly, but would
have a dramatic impact on duration prediction. One approach would be to include
the agents’ level of capability in the task’s state space, but the resulting expansion
in the size of the state space may prove unmanageable. Under certain simplifying
assumptions, it may be possible to factor out the effects of capability, performing
a two-stage prediction in which an initial duration distribution is constructed, as-
suming some baseline capability level, then is transformed according to the actual
set of capabilities. It may be possible to adapt duration transfer functions (Section
6.5.1) to address this.

9.1.4 Mutable Teams with Durative Integration and Disengagement

Our current model of mutable teams assumes that when an agent and recipient team
rendezvous, the agent is able to join the team instantly, with no deleterious effects
on the team’s progress. In reality, this will be true only for “non-contact” roles,
such as scouts, computation platforms, or signal relays. When an agent joins a
role in which it is cooperatively manipulating an object, or must otherwise closely
coordinate with other agents, the recipient team likely will need to slow or stop

199

9. Conclusions

progress temporarily to allow the new agent to integrate into the team. This will
serve to offset the usefulness of mutable teams to an extent, although the precise
degree of offset of course will be highly domain-dependent.

If the planner does not take into account the cost of agents integrating or disen-
gaging from teams, it may overuse mutable teams, to the detriment of the executed
schedule. In Section 6.5.2, we discuss several potential approaches to modeling
these effects within our duration prediction algorithm. Experimental evaluation of
these possibilities, and the exploration of other potential solutions, remains an open
research topic.

9.1.5 Mutable Teams and Semi-Terminal Failures

We have not yet explored optional roles that allow the team to recover from an
otherwise unrecoverable failure, but mutable teams show significant promise in this
realm. In their simplest incarnation, such “semi-terminal” failures cause the team’s
progress to halt until an otherwise optional role has been filled. In the absence of
mutable teams and live task modification, the planner would be forced to treat
such a role as required, in order to avoid a potentially infinite delay. In contrast, a
proactive replanner is able to reason about the likelihood of such a failure and the
average time needed to transfer an agent into the role. This allows the planner to
make a principled decision about whether the role should be filled, and increases
the flexibility of the system as a whole.

9.1.6 Applicability to Least-Commitment Planners

While we have developed our proactive replanning system using a most-commitment
planner, there is no fundamental reason why proactive replanning concepts could
not be applied to a constraint-based, least-commitment planner, such as IxTeT (La-
borie and Ghallab, 1995). If the task start times and durations are modeled within
the planner as distributions, duration prediction could prove particularly useful. If
they are instead modeled as ranges, it would be straightforward to convert distribu-
tions into a range covering a specified percentage of the probability mass.

Modeling mutable teams may prove difficult, as it would be difficult to predict
a likely duration distribution if the arrival and departure times of the participating
agents are not known. It is theoretically possible to build duration distributions
given a distribution across when an agent will arrive and depart, but it becomes
quite computationally expensive, at least when using our current approach. Fur-
ther research into how mutable teams could be efficiently represented in a least-
commitment planner could prove fruitful.

200

9.2. Summary

Of the components of proactive replanning that we have investigated, live task
modification is the most likely to be directly applicable. It primarily affects the
interaction between the planner and the executive, an interface that is quite similar
in both most- and least-commitment planners.

9.1.7 Predicting Resource Usage

It appears likely that our approach to duration prediction may be adapted to predict
either total resource usage over the remainder of the task, or a profile of likely
resource usage as a function of time. This possibility and a promising approach is
discussed in Section 5.6, although investigating it further is beyond the scope of
this thesis. If this proves to be feasible, it will provide the planner with a method
to apply proactive replanning techniques to metrics such as minimizing resource
consumption.

9.1.8 Human Interaction and Sliding Autonomy

An exciting future area of work in proactive replanning is its use to form integrated
human-robot teams. With adequate sensing technology, it may be possible to build
a duration prediction model for tasks performed by humans (either directly or via
teleoperation), allowing the planner to predict the expected duration of a human’s
task throughout execution. With this information, the planner may be able to de-
termine if the human is having difficulty with the task, and proactively offer to
provide a robot either to assist with or complete the task. Being able to determine
when another human is in need of assistance is an effective cooperative technique
utilized by human teams. Bringing this technique to a mixed human-robot team
could increase the efficiency and capability of the team as a whole.

Similarly, if humans are collocated with the robots or are available to perform
teleoperation, the planner may consider a human as another possible agent to fill a
role in a cooperative task. Of course, this is predicated upon the ability to model
heterogeneous agents. Given knowledge about the human’s skills, the planner
would be able to request assistance when the human’s abilities become particu-
larly valuable. This would allow the planner to coordinate the sliding of autonomy
for specific aspects of tasks between the autonomous agents and the collocated or
remote human team members.

9.2 Summary

We have presented the concept of proactive replanning, and investigated three com-
ponents: (live) duration prediction; optional roles and mutable teams; and live task

201

9. Conclusions

modification. We have integrated these methods into the ASPEN/CASPER sys-
tem, extending it as necessary, and developed a suite of heuristics to guide AS-
PEN’s iterative plan repair and optimization in their use. Live duration prediction
and mutable teams were experimentally evaluated in isolation, proving to be useful
techniques even when not used in concert with the remaining aspects of proactive
replanning. We also examined the effects and interactions of the three components
in various combinations on the ability of the system to build and carry out efficient
schedules in the face of uncertain execution. Mutable teams and live task mod-
ification both produced significant reductions in schedule length, with live task
modification’s gains conditional upon the availability of live duration prediction.
While much research remains, we have shown proactive replanning to be a useful
addition to the arsenal of available planning and execution techniques.

202

Bibliography

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An archi-
tecture for autonomy. International Journal of Robotics Research, Special Issue
on Integrated Architectures for Robot Control and Programming, 17(4).

Ambros-Ingerson, J. and Steel, S. (1988). Integrating planning, execution and
monitoring. In Proceedings of the National Conference on Artificial Intelligence
(AAAI).

Bacchus, F. and Ady, M. (2001). Planning with resources and concurrency: A
forward chaining approach. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI).

Beardah, C. C. (1997). Some archaeological applications of kernel density esti-
mates. Journal of Archaeological Science, 24:347–354.

Beetz, M. and McDermott, D. V. (1994). Improving robot plans during their exe-
cution. In Proceedings of the International Conference on AI Planning Systems
(AIPS).

Belker, T., Hammel, M., and Hertzberg, J. (2003). Learning to optimize mobile
robot navigation based on htn plans. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’03), volume 3, pages 4136–
4141.

Bernard, D., Dorais, G. A., Gamble, E., Kanefsky, B., Kurien, J., Millar, W.,
Muscettola, N., Nayak, P., Rouquette, N., Rajan, K., Smith, B., Taylor, W., and
Tung, Y.-W. (2000). Final report on the remote agent experiment. In Proceed-
ings of NMP DS-1 Technology Validation Symposium, Pasadena, CA.

Bertoli, P., Cimatti, A., Roverie, M., and Traverso, P. (2001). Planning in non-
deterministic domains under partial observability via symbolic model checking.
In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI).

203

BIBLIOGRAPHY

Boddy, M., Horling, B., Phelps, J., Goldman, R., Vincent, R., Long, A., and Ko-
hout, B. (2005). C-taems language specification v. 1.06.

Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D., and Slack, M. (1997).
Experiences with an architecture for intelligent, reactive agents. Journal of Ex-
perimental and Theoretical Artificial Intelligence, 9(2-3):237–256.

Bonet, B. and Geffner, H. (2000). Planning with incomplete information as heuris-
tic search in belief space. In Proceedings of the International Conference on AI
Planning Systems (AIPS).

Bookstein, F. L. (1989). Principal warps: Thin plate splines and the decomposition
of deformations. IEEE Transations on Pattern Analysis and Machine Intelli-
gence, 11:567–585.

Breiman, L. (1993). Classification and Regression Trees. Chapman and Hall, Boca
Raton.

Chatterjee, S. and Hadi, A. S. (1986). Influential observations, high leverage points,
and outliers in linear regression. Statistical Science, pages 379–416.

Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G. (1999). Inte-
grated planning and execution for autonomous spacecraft. In Proceedings of the
1999 IEEE Aerospace Conference, Aspen, CO.

Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G. (2000a). Using
iterative repair to improve the responsiveness of planning and scheduling. In
Proceedings of the International Conference on AI Planning Systems (AIPS).

Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Es-
tlin, T., Smith, B., Fisher, F., Barrett, T., Stebbins, G., and Tran, D. (2000b).
Aspen – automated planning and scheduling for space mission operations. In
Space Ops, Toulouse.

Cimatti, A. and Roveri, M. (2000). Conformant planning via symbolic model
checking. Journal of Artificial Intelligence Research, 13:305–338.

Correll, N. and Martinoli, A. (2004). Collective inspection of regular structures
using a swarm of miniature robots. In Proceedings of the Ninth International
Symposium on Experimenatl Robotis (ISER-04), number 6 (2005) in Springer
Tracts in Advanced Robotics, Singapore.

Currie, K. and Tate, A. (1991). O-plan: the open planning architecture. Artificial
Intelligence, 52.

204

BIBLIOGRAPHY

Dias, M. B., Lemai, S., and Muscettola, N. (2003). A real-time rover executive
based on model-based reactive planning. In Proceedings of the International
Conference on Robotics and Automation (ICRA).

Emery, R., Sikorski, K., and Balch, T. (2002). Protocols for collabora-
tion, coordination and dynamic role assignment in a robot team. In Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion, 2002 (ICRA’02), volume 3, pages 3008–3015, Washington, DC. DOI:
10.1109/ROBOT.2002.1013689.

Estany, M. G. and Losilla, C. B. (1998). An application of the transformed kernel
density estimation to labor earnings in spain. Working Papers in Economics 33,
Universitat de Barcelona. Espai de Recerca en Economia.

Estlin, T., Rabideau, G., Mutz, D., and Chien, S. (2000). Using continuous plan-
ning techniques to coordinate multiple rovers. Linkoping Electronic Articles in
Computer and Information Science, 5(16).

Estlin, T., Volpe, R., Nesnas, I., Mutz, D., Fisher, F., Engelhardt, B., and Chien, S.
(2001). Decision-making in a robotic architecture for autonomy. In Proceedings
of the International Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space.

Ferraris, P. and Giunchiglia, E. (2000). Planning as satisfiability in nondeterminis-
tic domains. In Proceedings of the National Conference on Artificial Intelligence
(AAAI).

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing gener-
alized robot plans. Artificial Intelligence, 3.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2.

Firby, R. J. (1994). Task networks for controlling continuous processes. Artificial
Intelligence Planning Systems.

Fox, M. and Long, D. (2002). Pddl 2.1: An extension to pddl for expressing
temporal planning domains. Technical report, University of Durham, UK.

Frank, J. and Jónsson, A. (2003). Constraint-based attribute and interval planning.
Journal of Constraints, Special Issue on Constraints and Planning, 8(4).

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion).
Annals of Statistics, 19:1–141.

205

BIBLIOGRAPHY

Fukunaga, A. S., Rabideau, G., Chien, S., and Yan, D. (1997). ASPEN: A frame-
work for automated planning and scheduling of spacecraft control and opera-
tions. In Proceedings of the International Symposium on AI, Robotics and Au-
tomation in Space (i-SAIRAS), Tokyo, Japan.

Garvey, A. and Lesser, V. (1995). Design-to-time scheduling with uncertainty.
Technical Report 95-03, University of Massachusetts.

Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI).

Gat, E. (1997). Esl: A language for supporting robust plan execution in embedded
autonomous agents. In Proceedings of the 1997 IEEE Aerospace Conference.

Gerkey, B. P. and Mataric, M. J. (2003). A formal framework for study of task
allocation in multi-robot systems. Technical Report CRES-03-13, University of
Southern California.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-gaussian bayesian state estimation. Proc. Inst. Elect. Eng. F,
140:107–113.

Haigh, K. Z. and Veloso, M. M. (1998). Planning, execution and learning in a
robotic agent. In Proceedings of the International Conference on AI Planning
Systems (AIPS).

Heger, F. W., Hiatt, L. M., Sellner, B., Simmons, R., and Singh, S. (September 5-8,
2005). Results in Sliding Autonomy for Multi-Robot Spatial Assembly. In 8th
International Symposium on Artificial Intelligence, Robotics and Automation in
Space (iSAIRAS), Munich, Germany.

Jennings, J. and Kirkwood-Watts, C. (1998). Distributed mobile robotics by the
method of dynamic teams. In ???

Karalic, A. (1992). Linear regression in regression tree leaves. In Proceedings of
ISSEK ’92 (International School for Synthesis of Expert Knowledge).

Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation
Theory, chapter 7. Prentice Hall.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86.

206

BIBLIOGRAPHY

Laborie, P. and Ghallab, M. (1995). Planning with sharable resource constraints.
In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI).

Maheswaran, R. T. and Szekely, P. (2008). Criticality metrics for distributed plan
and schedule management. In Proceedings of the Eighteenth International Con-
ference on Automated Planning and Scheduleing (ICAPS).

Mataric, M. J. (1992). Designing emergent behaviors: from local interactions to
collective intelligence. In Meyer, J. A., Roitblat, H., and Wilson, S., editors,
Proceedings of the 2nd International Conference on Simulation of Adaptive Be-
havior (SAB-92), pages 432–441, Cambridge, MA. MIT Press.

Mataric, M. J., Sukhatme, G. S., and Ostergaard, E. H. (2003). Multi-robot task
allocation in uncertain environments. Autonomous Robots, 14:255–263.

Meuleau, N., Dearden, R., and Washington, R. (2004). Scaling up decision the-
oretic planning to planetary rover problems. In AAAI-04: Proceedings of the
Workshop on Learning and Planning in Markov Processes Advances and Chal-
lenges, volume Technical Report WS-04-08, pages 66–71, Menlo Park, CA.
AAAI Press.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580.

Muscettola, N. (1994). Intelligent Scheduling, chapter HSTS: Integrating planning
and scheduling. Morgan Kaufmann.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., and Plaunt, C. (2002). Idea:
Planning at the core of autonomous reactive agents. In Proceedings of the 3rd
International NASA Workshop Planning and Scheduling for Space.

Muscettola, N., Nayak, P., Pell, B., and Williams, B. (1998). Remote agent: To
boldly go where no ai system has gone before. Artificial Intelligence, 103(1-2).

Musliner, D. J., Durfee, E. H., hui Wu, J., Dolgov, D. A., Goldman, R. P., and
Boddy, M. S. (2006). Coordinated plan management using multiagent mdps.
In Proceedings of the 2006 AAAI Spring Symposium on Distributed Plan and
Schedule Management. AAAI Press.

Nau, D., oz Avila, H. M., Cao, Y., Lotem, A., and Mitchell, S. (2001). Total-order
planning with partially ordered subtasks. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).

207

BIBLIOGRAPHY

Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., and Kim, W. S.
(2003). Claraty: An architecture for reusable robotic software. In Proceedings
of the SPIE Aerosense Conference, Orlando, Florida.

Park, J. and Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. Neural Computation, 3(2):246–257. ISSN:0899-7667, pub-
lished by MIT Press, Cambridge, MA, USA.

Parzen, E. (1962). On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3):1065–1076.

Quinlan, J. (1992). Learning with continuous classes. In Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence.

Reinsch, C. (1967). Smoothing by spline functions. Numerical Mathematics,
10:177–183.

Sellner, B., Heger, F. W., Hiatt, L. M., Simmons, R., and Singh, S. (2006). Coordi-
nated multi-agent teams and sliding autonomy for large-scale assembly. Special
Issue of the Proceedings of the IEEE on Multi-Robot Systems, 94(7).

Sellner, B., Simmons, R., and Singh, S. (2005). User Modelling for Principled
Sliding Autonomy in Human-Robot Teams. In Parker, L. E., Schneider, F. E.,
and Schultz, A. C., editors, Multi-Robot Systems: From Swarms to Intelligent
Automata, volume 3. Springer.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chap-
man and Hall, London, UK.

Simmons, R. and Apfelbaum, D. (1998). A task description language for robot
control. In Proceedings of the Conference on Intelligent Robots and Systems
(IROS), Victoria, Canada.

Simmons, R., Singh, S., Heger, F., Hiatt, L., Koterba, S., Melchior, N., and Sellner,
B. (2007). Human-robot teams for large-scale assembly. In Proceedings of the
NASA Science Technology Conference 2007 (NSTC-07), Adelphi, MD.

Smith, D. and Weld, D. (1998). Conformant graphplan. In Proceedings of the
National Conference on Artificial Intelligence (AAAI).

Smith, D. and Weld, D. (1999). Temporal planning with mutual exclusion reason-
ing. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI).

208

BIBLIOGRAPHY

Smith, S., Gallagher, A. T., Zimmerman, T. L., Barbulescu, L., , and Rubinstein, Z.
(2006). Multi-agent management of joint schedules. In Proceedings of the 2006
AAAI Spring Symposium on Distributed Plan and Schedule Management.

Smith, S., Gallagher, A. T., Zimmerman, T. L., Barbulescu, L., , and Rubinstein,
Z. (2007). Distributed management of flexible times schedules. In Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). AAAI Press.

Smith, S. F. (1988). Reactive scheduling systems. In Expert Systems and Intelligent
Manufacturing, pages 43–56. Elsevier Science Publishing Co., Inc.

Smith, S. F. (1993). Integrating planning and scheduling: Towards effective coordi-
nation in complex, resource-constrained domains. In Proceedings of the Italian
Planning Workshop, Rome, Italy.

Smith, S. F., Ow, P. S., Muscettola, N., Potvin, J.-Y., and Matthys, D. C. (1990).
Opis: An opportunistic factory scheduling system. In Proceedings of the Third
International Conference on Industrial and Engineering Applications of Artifi-
cial Intelligence and Expert Systems (IEA/AIE-90), Knoxville, TE.

Stone, P. and Veloso, M. (1998). Task decomposition and dynamic role assignment
for real time strategic teamwork. In Proceedings of 5th International Workshop
on Intelligent Agents, Agent Theories, Architectures, and Languages (ATAL ’98),
Paris, France.

Strens, M. and Windelinckx, N. (2005). Combining planning with reinforcement
learning for multi-robot task allocation. Adaptive Agents and MAS II, LNAI
3394, pages 269–274.

Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G. A., Marsella, S. C.,
and Muslea, I. (1999). Building agent teams using an explicit teamwork model
and learning. Artificial Intelligence, 110:215–239.

Vijayakumar, S. (2001). Locally Weighted Projection Regression (LWPR) - a users
manual. Dept. of Computer Science and Neuroscience, University of Southern
California, Los Angeles, CA 90089-2520.

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Lwpr: A scalable method for
incremental online learning in high dimensions. Neural Computation.

Vijayakumar, S. and Schaal, S. (2000). Locally weighted projection regression. In
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000), volume 1, pages 288–293.

209

BIBLIOGRAPHY

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. (2000). Claraty:
Coupled layer architecture for robotic autonomy. Technical report, Jet Propul-
sion Laboratory.

Wagner, T. and Lesser, V. (1999). Design-to-criteria scheduling: Real-time agent
control. Technical Report 1999-58, University of Massachusetts.

Wasserman, L. (2003). All of Statistics: A Concise Course in Statistical Inference.
Springer. ISBN 0387402721, 9780387402727.

Weld, D., Anderson, C., and Smith, D. (1998). Extending graphplan to handle
uncertainty and sensing actions. In Proceedings of the National Conference on
Artificial Intelligence (AAAI).

Wilkins, D. E. (1988). Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann.

Woods, W. A. (1970). Transition network grammars for natual language analysis.
CACM 13, 10:591–606.

Woods, W. A. (1973). Natural Language Processing, ed. R. Rustin, chapter An
experimental parsing system for transition network grammars, pages 111–154.
Algorithmics Press, New York.

Zweben, M., Davis, E., Daun, B., and Deale, M. (1992). Rescheduling with iter-
ative repair. Technical Report N93-15288, AI Research Branch, NASA Ames
Research Center, Moffet Field, CA 94025, USA.

210

Appendices

211

Appendix A

Algorithms for Duration
Prediction with Mutable Teams

213

A. Algorithms for Duration Prediction with Mutable Teams

Algorithm A.1 The transfer function between two distributions is a mapping of
a CDF value to a PDF and duration ratio, which may be applied to distributions
similar to the source distribution in order to transform them into the same domain
as the destination distribution.

1: function computeTransferFn(dist A, dist B) do
2: cdfV als = ∅
3: for i = 0...1 do
4: {Place knot points where either CDF’s second derivative is large.}
5: if d

2cdf(A)
dt2

> eps‖d
2cdf(B)
dt2

> eps then
6: cdfV als.add(i)
7: end if
8: end for
9: map = ∅

10: for all cv ∈ cdfV als do
11: {dur(A, cv) returns the duration at which A’s CDF has a value of cv.}
12: {pdf(A, d) returns the value of A’s PDF at duration d.}
13: dA = dur(A, cv)
14: dB = dur(B, cv)
15: dratio = dB

dA

16: pratio = pdf(B,dB)
pdf(A,dA)

17: map.add({cv, pratio, dratio})
18: end for
19: return map
20: end function
21: function applyTransferFn(dist A’, map) do
22: outPDF = ∅
23: for all m ∈ map do
24: {cv, pratio, dratio} = m
25: dA′ = dur(A′, cv)
26: d = dA′ ∗ dratio
27: p = pdf(A′, dA′) ∗ pratio
28: outPDF.add({d, p})
29: end for
30: Interpolate the knot points of outPDF to the resolution required and return

the resulting distribution.
31: end function

214

A. Algorithms for Duration Prediction with Mutable Teams

Algorithm A.2 Distribution transfer functions utilize the assumption that the form
of a particular team’s duration distribution will not change during task execution to
approximate the expected duration distribution, given future arrivals and departures
of agents.

1: {ti is the time at which the team profile change occurs, while pi is the change
in assigned agents. t0 = 0 and p0 is the null change.}

2: T = (t0, p0)...(tn, pn)
3: S = Initial state
4: stateDists = ∅
5: for j = 0...n do
6: S = S + pj {Apply the change in the team}
7: stateDists[j] = query(S)
8: end for
9: dist = stateDists[0]

10: for i = 1...n do
11: transferFn = computeTransferFn(stateDists[i− 1], stateDists[i])

12: dist = shift(dist, ti) {shift(d, t) shifts the distribution d t units towards
0.}

13: dist = applyTransferFn(dist, transferFn)
14: end for
15: dist = shift(dist,−tn)

215

A. Algorithms for Duration Prediction with Mutable Teams

Algorithm A.3 Particle projection prediction projects a set of particles through
the training database to estimate the duration distribution of a task whose set of
assigned agents is expected to change over time.

1: {ti is the time at which the profile change occurs, while pi is the change in
assigned agents. t0 = 0 and p0 is the null change.}

2: T = (t0, p0)...(tn, pn)
3: S = Query (initial) state
4: {states is a vector of tuples, each of which consist of a point in the task’s state

space, a weight, and a duration offset}
5: states = (S, 1, 0)
6: for all Tj in T do
7: points = ∅ {points is of the same form as states}
8: for all sk in states do
9: qpoints = query(Sk)

10: Multiply weights of qpoints by weight of sk {Duration offsets are copied
from sk}

11: points = points+ qpoints
12: end for
13: points = resample(O, points)
14: Normalize the weights of points
15: Aggregate any states in point with identical states and duration offsets.
16: if j == n then
17: {If this was the last projection, build distribution and return}
18: dist = empty distribution
19: for all pti in points do
20: d = duration(pti) + offset(pti) +

∑n
i=1 ti

21: Add kernel to dist centered at d with weight weight(pti)
22: end for
23: return dist
24: end if

{Otherwise, apply the next projection}
25: states = ∅
26: for all pti in points do
27: state(pt) = point closest to tj+1 time units further along pti’s run
28: weight(pt) = weight(pti)
29: offset(pt) = offset(pti) + (duration(pti)− duration(pt)− tj+1)
30: state(pt) = state(pt) + pj+1 {Apply the change in the team}
31: states = states+ pt
32: end for
33: end for

216

Appendix B

TaskSim Model Definitions

B.1 Outpost Scenario

The following listings are simplified forms of the TaskSim (Section 8.1.3) models
used in the live duration prediction experiments (Chapter 5). In all models, tg is
the model’s global time variable, which is used to synchronize the execution of the
model with the rest of the simulator.

Listing B.1: A slightly simplified form of the HabHaul TaskSim model.
1 Machine HabHaul(Var DistanceTravelled = 0, Var GlitchRecovery = 0) {
2 Var targetDist = 50;
3 Var step = normal (0.5, 0.1);
4 Var glitch r = uniform (0,1);
5 Var glitch p = 0.01;
6 VarRef glitchCost = (glitch r <= glitch p)∗50;
7

8 State Hauling {
9 Start

10 Arcs => {
11 (Name => ”Haul”,
12 Test => (targetDist − DistanceTravelled > 0 && glitchCost <= 0),
13 Effect => (DistanceTravelled = min(targetDist , DistanceTravelled + step);
14 t g ++;),
15 Target => ”Hauling”),
16 (Name => ”Glitch”,
17 Test => (glitchCost > 0),
18 Effect => (GlitchRecovery = glitchCost ;),
19 Target => ”Recovering”),
20 (Name => ”Finished”,
21 Test => (targetDist − DistanceTravelled <= 0 && glitchCost <= 0),

217

B. TaskSim Model Definitions

22 Effect => (),
23 Target => ”Done”)
24 }
25 }
26 State Recovering {
27 Arcs => {
28 (Name => ”Recover”,
29 Test => (GlitchRecovery > 0),
30 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
31 t g ++;),
32 Target => ”Recovering”),
33 (Name => ”Recovered”,
34 Test => (GlitchRecovery <= 0),
35 Effect => (GlitchRecovery = 0;),
36 Target => ”Hauling”)
37 }
38 }
39 State Done {
40 Stop
41 }
42 };

Listing B.2: A slightly simplified form of the Move TaskSim model used in the
Outpost scenario.

1 Machine Move(Var DistanceTravelled = 0, Var GlitchRecovery = 0) {
2 Var targetDist = 50;
3 Var step = normal(1, 0.25);
4 Var glitch r = uniform (0,1);
5 Var glitch p = 0.01;
6

7 VarRef glitchCost = (glitch r <= glitch p)∗50;
8

9 State Moving {
10 Start
11 Arcs => {
12 (Name => ”Move”,
13 Test => (targetDist − DistanceTravelled > 0 && glitchCost <= 0),
14 Effect => (DistanceTravelled = min(targetDist , DistanceTravelled + step);
15 t g ++;),
16 Target => ”Moving”),
17 (Name => ”Glitch”,
18 Test => (glitchCost > 0),
19 Effect => (GlitchRecovery = glitchCost ;),
20 Target => ”Recovering”),

218

B.1. Outpost Scenario

21 (Name => ”Finished”,
22 Test => (targetDist − DistanceTravelled <= 0 && glitchCost <= 0),
23 Effect => (),
24 Target => ”Done”)
25 }
26 }
27 State Recovering {
28 Arcs => {
29 (Name => ”Recover”,
30 Test => (GlitchRecovery > 0),
31 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
32 t g ++;),
33 Target => ”Recovering”),
34 (Name => ”Recovered”,
35 Test => (GlitchRecovery <= 0),
36 Effect => (GlitchRecovery = 0;),
37 Target => ”Moving”)
38 }
39 }
40 State Done {
41 Stop
42 }
43 };

Listing B.3: A slightly simplified form of the Cable TaskSim model used in the
Outpost scenario.

1 Machine Cable(Var DistanceTravelled = 0, Var GlitchRecovery = 0) {
2 Var targetDist = 50;
3 Var step = normal (0.3, 0.25);
4 Var glitch r = uniform (0,1);
5 Var glitch p = 0.02;
6

7 VarRef glitchCost = (glitch r <= glitch p)∗50;
8

9 State Cabling {
10 Start
11 Arcs => {
12 (Name => ”Cable”,
13 Test => (targetDist − DistanceTravelled > 0 && glitchCost <= 0),
14 Effect => (DistanceTravelled = min(targetDist , DistanceTravelled + step);
15 t g ++;),
16 Target => ”Cabling”),
17 (Name => ”Glitch”,
18 Test => (glitchCost > 0),

219

B. TaskSim Model Definitions

19 Effect => (GlitchRecovery = glitchCost ;),
20 Target => ”Recovering”),
21 (Name => ”Finished”,
22 Test => (targetDist − DistanceTravelled <= 0 && glitchCost <= 0),
23 Effect => (),
24 Target => ”Done”)
25 }
26 }
27 State Recovering {
28 Arcs => {
29 (Name => ”Recover”,
30 Test => (GlitchRecovery > 0),
31 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
32 t g ++;),
33 Target => ”Recovering”),
34 (Name => ”Recovered”,
35 Test => (GlitchRecovery <= 0),
36 Effect => (GlitchRecovery = 0;),
37 Target => ”Cabling”)
38 }
39 }
40 State Done {
41 Stop
42 }
43 };

Listing B.4: A slightly simplified form of the CommHaul TaskSim model.
1 Machine CommHaul(Var DistanceTravelled = 0, Var GlitchRecovery = 0) {
2 Var targetDist = 50;
3 Var step = normal(2, 0.25);
4 Var glitch r = uniform (0,1);
5 Var glitch p = 0.01;
6

7 VarRef glitchCost = (glitch r <= glitch p)∗100;
8

9 State Hauling {
10 Start
11 Arcs => {
12 (Name => ”Haul”,
13 Test => (targetDist − DistanceTravelled > 0 && glitchCost <= 0),
14 Effect => (DistanceTravelled = min(targetDist , DistanceTravelled + step);
15 t g ++;),
16 Target => ”Hauling”),
17 (Name => ”Glitch”,

220

B.1. Outpost Scenario

18 Test => (glitchCost > 0),
19 Effect => (GlitchRecovery = glitchCost ;),
20 Target => ”Recovering”),
21 (Name => ”Finished”,
22 Test => (targetDist − DistanceTravelled <= 0 && glitchCost <= 0),
23 Effect => (),
24 Target => ”Done”)
25 }
26 }
27 State Recovering {
28 Arcs => {
29 (Name => ”Recover”,
30 Test => (GlitchRecovery > 0),
31 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
32 t g ++;),
33 Target => ”Recovering”),
34 (Name => ”Recovered”,
35 Test => (GlitchRecovery <= 0),
36 Effect => (GlitchRecovery = 0;),
37 Target => ”Hauling”)
38 }
39 }
40 State Done {
41 Stop
42 }
43 };

Listing B.5: A slightly simplified form of the CommSetup TaskSim model.
1 Machine CommSetup(Var Progress = 0, Var GlitchRecovery = 0) {
2 Var step = normal (0.05, 0.01);
3 Var glitch r = uniform (0,1);
4 Var glitch p = 0.02;
5

6 VarRef glitchCost = (glitch r <= glitch p)∗200;
7

8 State Setting {
9 Start

10 Arcs => {
11 (Name => ”Setup”,
12 Test => (Progress < 1.0 && glitchCost <= 0),
13 Effect => (Progress = min(1.0, Progress + step);
14 t g ++;),
15 Target => ”Setting”),
16 (Name => ”Glitch”,

221

B. TaskSim Model Definitions

17 Test => (glitchCost > 0),
18 Effect => (GlitchRecovery = glitchCost ;),
19 Target => ”Recovering”),
20 (Name => ”Finished”,
21 Test => (Progress >= 1.0 && glitchCost <= 0),
22 Effect => (),
23 Target => ”Done”)
24 }
25 }
26 State Recovering {
27 Arcs => {
28 (Name => ”Recover”,
29 Test => (GlitchRecovery > 0),
30 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
31 t g ++;),
32 Target => ”Recovering”),
33 (Name => ”Recovered”,
34 Test => (GlitchRecovery <= 0),
35 Effect => (GlitchRecovery = 0;),
36 Target => ”Setting”)
37 }
38 }
39 State Done {
40 Stop
41 }
42 };

Listing B.6: A slightly simplified form of the HabMaint TaskSim model.
1 Machine HabMaint(Var Progress = 0, Var GlitchRecovery = 0) {
2 Var step = normal(0.025, 0.01);
3 Var glitch r = uniform (0,1);
4 Var glitch p = 0.05;
5

6 VarRef glitchCost = (glitch r <= glitch p)∗20;
7

8 State Maintaining {
9 Start

10 Arcs => {
11 (Name => ”Maintain”,
12 Test => (Progress < 1.0 && glitchCost <= 0),
13 Effect => (Progress = min(1.0, Progress + step);
14 t g ++;),
15 Target => ”Maintaining”),
16 (Name => ”Glitch”,

222

B.1. Outpost Scenario

17 Test => (glitchCost > 0),
18 Effect => (GlitchRecovery = glitchCost ;),
19 Target => ”Recovering”),
20 (Name => ”Finished”,
21 Test => (Progress >= 1.0 && glitchCost <= 0),
22 Effect => (),
23 Target => ”Done”)
24 }
25 }
26 State Recovering {
27 Arcs => {
28 (Name => ”Recover”,
29 Test => (GlitchRecovery > 0),
30 Effect => (GlitchRecovery = max(0, GlitchRecovery − 1);
31 t g ++;),
32 Target => ”Recovering”),
33 (Name => ”Recovered”,
34 Test => (GlitchRecovery <= 0),
35 Effect => (GlitchRecovery = 0;),
36 Target => ”Maintaining”)
37 }
38 }
39 State Done {
40 Stop
41 }
42 };

Listing B.7: A slightly simplified form of the SoilObservation TaskSim model.
1 Machine SoilObservation (Var Progress = 0) {
2 Var step = normal(0.025, 0.01);
3

4 State Observing {
5 Start
6 Arcs => {
7 (Name => ”Look”,
8 Test => (Progress < 1.0),
9 Effect => (Progress = min(1.0, Progress + step);

10 t g ++;),
11 Target => ”Observing”),
12 (Name => ”Finished”,
13 Test => (Progress >= 1.0),
14 Effect => (),
15 Target => ”Done”)
16 }

223

B. TaskSim Model Definitions

17 }
18 State Done {
19 Stop
20 }
21 };

Listing B.8: A slightly simplified form of the SkyObservation TaskSim model.
1 Machine SkyObservation(Var Progress = 0) {
2 Var step = normal (0.05, 0.01);
3

4 State Observing {
5 Start
6 Arcs => {
7 (Name => ”Look”,
8 Test => (Progress < 1.0),
9 Effect => (Progress = min(1.0, Progress + step);

10 t g ++;),
11 Target => ”Observing”),
12 (Name => ”Finished”,
13 Test => (Progress >= 1.0),
14 Effect => (),
15 Target => ”Done”)
16 }
17 }
18 State Done {
19 Stop
20 }
21 };

B.2 CommTower Scenario

The following listings are simplified forms of the TaskSim (Section 8.1.3) models
used in the mutable teams and complete proactive replanning system experiments
(Chapters 6 and 8, respectively). In all models, tg is the model’s global time vari-
able, which is used to synchronize the execution of the model with the rest of the
simulator.

Listing B.9: A slightly simplified form of the Move TaskSim model.
1 Machine Move(Var DistanceRemaining = 60, Var GlitchRecovery = 0) {
2 VarRef step = normal (1.0, 0.1);
3

4 State Moving {

224

B.2. CommTower Scenario

5 Start
6 Arcs => {
7 (Name => ”Move”,
8 Test => (DistanceRemaining > 0),
9 Effect => (DistanceRemaining = max(DistanceRemaining − step, 0);

10 t g ++;),
11 Target => ”Moving”),
12 (Name => ”Finished”,
13 Test => (DistanceRemaining <= 0),
14 Effect => (),
15 Target => ”Done”)
16 }
17 }
18 State Done {
19 Stop
20 }
21 };

Listing B.10: A slightly simplified form of the Transport TaskSim model.
1 Machine Transport(Var NumTransporters = 1,
2 Var DistanceRemaining = 60,
3 Var GlitchRecovery = 0) {
4 Var step r = normal (0.5, 0.1);
5 VarRef step = max(0, step r);
6 Var glitch r = uniform (0,1);
7 Var glitch p = 0.0075;
8 VarRef glitchCost = (glitch r <= glitch p)∗100;
9 Var optRecoveryStep = 50;

10

11 State Hauling {
12 Start
13 Arcs => {
14 (Name => ”Haul”,
15 Test => (DistanceRemaining > 0 && glitchCost <= 0
16 && GlitchRecovery <= 0 && NumTransporters >= 1),
17 Effect => (DistanceRemaining = max(DistanceRemaining − step, 0);
18 t g ++;),
19 Target => ”Hauling”),
20 (Name => ”Noop”,
21 Test => (NumTransporters < 1),
22 Effect => (t g ++;),
23 Target => ”Hauling”),
24 (Name => ”Glitch”,
25 Test => ((glitchCost > 0 || GlitchRecovery > 0) && NumTransporters >= 1),

225

B. TaskSim Model Definitions

26 Effect => (GlitchRecovery = max(GlitchRecovery, glitchCost);),
27 Target => ”Recovering”),
28 (Name => ”Finished”,
29 Test => (DistanceRemaining <= 0 && glitchCost <= 0
30 && GlitchRecovery <= 0 && NumTransporters >= 1),
31 Effect => (),
32 Target => ”Done”)
33 }
34 }
35 State Recovering {
36 Arcs => {
37 (Name => ”Recover”,
38 Test => (GlitchRecovery > 0 && NumTransporters >= 1),
39 // Additional transporters massively speed up recovery
40 Effect => (GlitchRecovery = max(0, GlitchRecovery
41 − 1.0
42 − NumTransporters∗optRecoveryStep
43 + optRecoveryStep);
44 t g ++;),
45 Target => ”Recovering”),
46 (Name => ”Noop”,
47 Test => (NumTransporters < 1),
48 Effect => (t g ++;),
49 Target => ”Recovering”),
50 (Name => ”Recovered”,
51 Test => (GlitchRecovery <= 0 && NumTransporters >= 1),
52 Effect => (GlitchRecovery = 0;),
53 Target => ”Hauling”)
54 }
55 }
56 State Done {
57 Stop
58 }
59 };

Listing B.11: A slightly simplified form of the Lift TaskSim model.
1 Machine Lift (Var NumLifters = 1, Var NumBracers = 0, Var Progress = 0) {
2 Var step r = normal(0.025, 0.01);
3 VarRef step = max(0, step r);
4 Var slip r = uniform (0,1);
5 VarRef slip p = (NumBracers <= 0)∗0.02;
6 VarRef slipOccurred = slip r < slip p ;
7

8 State Lifting {

226

B.2. CommTower Scenario

9 Start
10 Arcs => {
11 (Name => ” Lift ” ,
12 Test => (Progress < 1.0 && !slipOccurred && NumLifters >= 1),
13 Effect => (Progress = min(1.0, Progress + step);
14 t g ++;),
15 Target => ”Lifting”),
16 (Name => ”Noop”,
17 Test => (NumLifters < 1),
18 Effect => (t g ++;),
19 Target => ”Lifting”),
20 (Name => ”Slip” ,
21 Test => (slipOccurred && NumLifters >= 1),
22 Effect => (Progress = 0.0;
23 t g ++;),
24 Target => ”Lifting”),
25 (Name => ”Finished”,
26 Test => (Progress >= 1.0 && !slipOccurred && NumLifters >= 1),
27 Effect => (),
28 Target => ”Done”)
29 }
30 }
31 State Done {
32 Stop
33 }
34 };

Listing B.12: A slightly simplified form of the Assemble TaskSim model.
1 Machine Assemble(Var NumAssemblers = 1, Var Progress = 0, Var Pickup = 0) {
2 Var step r = normal (0.05, 0.01);
3 VarRef step = max(0, step r);
4 Var drop r = uniform (0,1);
5 VarRef drop p = (1 / NumAssemblers)∗0.02;
6

7 Var pickup r = normal(60, 5.0);
8 VarRef pickupTime = (drop r <= drop p)∗max(0, pickup r);
9 Var optPickupStep = 60;

10

11 State Assembling {
12 Start
13 Arcs => {
14 (Name => ”Assemble”,
15 Test => (Progress < 1.0 && pickupTime <= 0
16 && Pickup <= 0 && NumAssemblers >= 1),

227

B. TaskSim Model Definitions

17 Effect => (Progress = min(1.0, Progress + step);
18 t g ++;),
19 Target => ”Assembling”),
20 (Name => ”Noop”,
21 Test => (NumAssemblers < 1),
22 Effect => (t g ++;),
23 Target => ”Assembling”),
24 (Name => ”Drop”,
25 Test => ((pickupTime > 0 || Pickup > 0) && NumAssemblers >= 1),
26 Effect => (Pickup = max(Pickup, pickupTime);),
27 Target => ”PickingUp”),
28 (Name => ”Finished”,
29 Test => (Progress >= 1.0 && pickupTime <= 0
30 && Pickup <= 0 && NumAssemblers >= 1),
31 Effect => (),
32 Target => ”Done”)
33 }
34 }
35 State PickingUp {
36 Arcs => {
37 (Name => ”Pickup”,
38 Test => (Pickup > 0 && NumAssemblers >= 1),
39 Effect => (Pickup = max(0, Pickup − 1 − (NumAssemblers − 1)∗optPickupStep);
40 t g ++;),
41 Target => ”PickingUp”),
42 (Name => ”Noop”,
43 Test => (NumAssemblers < 1),
44 Effect => (t g ++;),
45 Target => ”PickingUp”),
46 (Name => ”Picked”,
47 Test => (Pickup <= 0 && NumAssemblers >= 1),
48 Effect => (Pickup = 0;),
49 Target => ”Assembling”)
50 }
51 }
52 State Done {
53 Stop
54 }
55 };

Listing B.13: A slightly simplified form of the Cable TaskSim model.
1 Machine Cable(Var NumCablers = 1, Var ConnectorsDone = 0) {
2 Var numConnectors = 5;
3 Var step r = normal (0.3, 0.25);

228

B.2. CommTower Scenario

4 VarRef step = max(0, step r + (NumCablers − 1)∗0.1);
5 Var drop r = uniform (0,1);
6 VarRef drop p = 0.05 − (NumCablers − 1)∗0.025;
7 VarRef dropOccurred = drop r < drop p;
8

9 State Cabling {
10 Start
11 Arcs => {
12 (Name => ”Cable”,
13 Test => (numConnectors − ConnectorsDone > 0
14 && !dropOccurred && NumCablers >= 1),
15 Effect => (ConnectorsDone = min(numConnectors, ConnectorsDone + step);
16 t g ++;),
17 Target => ”Cabling”),
18 (Name => ”Noop”,
19 Test => (NumCablers < 1),
20 Effect => (t g ++;),
21 Target => ”Cabling”),
22 (Name => ”Drop”,
23 Test => (dropOccurred && NumCablers >= 1),
24 Effect => (ConnectorsDone = floor(ConnectorsDone);
25 t g ++;),
26 Target => ”Cabling”),
27 (Name => ”Finished”,
28 Test => (numConnectors − ConnectorsDone <= 0
29 && !dropOccurred && NumCablers >= 1),
30 Effect => (),
31 Target => ”Done”)
32 }
33 }
34 State Done {
35 Stop
36 }
37 };

Listing B.14: A slightly simplified form of the LayCable TaskSim model.
1 Machine LayCable(Var NumCablers = 1,
2 Var DistanceRemaining = 60,
3 Var SnagRecovery = 0) {
4

5 // The rate of progress is degraded by the amount of cable the
6 // agents are transporting . This degration is partially
7 // compensated for by adding additional agents . This works out to
8 // a minimum progress of 0.1 for a single cabler at distance 60

229

B. TaskSim Model Definitions

9 // from the goal .
10 VarRef overload = max(0, DistanceRemaining
11 − (NumCablers >= 2)∗20
12 − (NumCablers == 1)∗15);
13 Var step r = normal (0.0, 0.1);
14 VarRef step = max(0, step r + max(0.1, 1.0 − overload /50));
15 Var snag r = uniform (0,1);
16 VarRef snag p = 0.0075;
17 Var snagCost r = uniform(120, 130);
18 VarRef snagCost = (snag r <= snag p)∗snagCost r;
19 Var snag step = normal(1, 0.1);
20 Var optSnagStep = 60;
21

22 State Laying {
23 Start
24 Arcs => {
25 (Name => ”Lay”,
26 Test => (DistanceRemaining > 0 && snagCost <= 0
27 && SnagRecovery <= 0 && NumCablers >= 1),
28 Effect => (DistanceRemaining = max(DistanceRemaining − step, 0);
29 t g ++;),
30 Target => ”Laying”),
31 (Name => ”Noop”,
32 Test => (NumCablers < 1),
33 Effect => (t g ++;),
34 Target => ”Laying”),
35 (Name => ”Snag”,
36 Test => ((snagCost > 0 || SnagRecovery > 0) && NumCablers >= 1),
37 Effect => (SnagRecovery = max(SnagRecovery, snagCost);),
38 Target => ”Clearing”),
39 (Name => ”Finished”,
40 Test => (DistanceRemaining <= 0 && snagCost <= 0
41 && SnagRecovery <= 0 && NumCablers >= 1),
42 Effect => (),
43 Target => ”Done”)
44 }
45 }
46 State Clearing {
47 Arcs => {
48 (Name => ”Clear” ,
49 Test => (SnagRecovery > 0 && NumCablers >= 1),
50 Effect => (SnagRecovery = max(0, SnagRecovery
51 − max(0, snag step)
52 − NumCablers∗optSnagStep
53 + optSnagStep);

230

B.2. CommTower Scenario

54 t g ++;),
55 Target => ”Clearing”),
56 (Name => ”Noop”,
57 Test => (NumCablers < 1),
58 Effect => (t g ++;),
59 Target => ”Clearing”),
60 (Name => ”Cleared”,
61 Test => (SnagRecovery <= 0 && NumCablers >= 1),
62 Effect => (SnagRecovery = 0;),
63 Target => ”Laying”)
64 }
65 }
66 State Done {
67 Stop
68 }
69 };

Listing B.15: A slightly simplified form of the Supply Habitat TaskSim model.
1 Machine SupplyHabitat(Var NumSuppliers = 1,
2 Var DistanceRemaining = 60,
3 Var BoxesLoaded = 0) {
4 Var numBoxes = 10;
5 Var step r = normal (0.0, 0.1);
6 VarRef boxStep = max(0, step r + 1.0∗NumSuppliers);
7 VarRef moveStep = max(0, step r + 1.0∗NumSuppliers);
8 Var drop p = 0.01;
9 Var drop r = uniform (0,1);

10 Var numDrop r = uniform (0,1);
11 VarRef droppedBoxes = (drop r <= drop p)
12 ∗ ceil (numDrop r ∗ numBoxes)
13

14 State Loading {
15 Start
16 Arcs => {
17 (Name => ’Load’,
18 Test => (BoxesLoaded < numBoxes),
19 Effect => (BoxesLoaded = min(BoxesLoaded + boxStep, numBoxes);
20 t g ++;),
21 Target => ’Loading’),
22 (Name => ’Loaded’,
23 Test => (BoxesLoaded >= numBoxes),
24 Effect => (),
25 Target => ’Hauling’)
26 }

231

B. TaskSim Model Definitions

27 }
28 State Hauling {
29 Arcs => {
30 (Name => ’Haul’,
31 Test => (DistanceRemaining > 0 && BoxesLoaded >= numBoxes),
32 Effect => (DistanceRemaining = max(DistanceRemaining − moveStep, 0);
33 BoxesLoaded = max(BoxesLoaded − droppedBoxes, 0);
34 t g ++;),
35 Target => ’Hauling’),
36 (Name => ’Reload’,
37 Test => (BoxesLoaded < numBoxes),
38 Effect => (),
39 Target => ’Loading’),
40 (Name => ’Hauled’,
41 Test => (DistanceRemaining <= 0 && BoxesLoaded >= numBoxes),
42 Effect => (),
43 Target => ’Unloading’)
44 }
45 }
46 State Unloading {
47 Arcs => {
48 (Name => ’Unload’,
49 Test => (DistanceRemaining <= 0 && BoxesLoaded > 0),
50 Effect => (BoxesLoaded = max(BoxesLoaded − boxStep, 0);
51 t g ++;),
52 Target => ’Unloading’),
53 (Name => ’Unloaded’,
54 Test => (DistanceRemaining <= 0 && BoxesLoaded <= 0),
55 Effect => (),
56 Target => ’Done’)
57 }
58 }
59 State Done {
60 Stop
61 }
62 };

Listing B.16: A slightly simplified form of the StowSupplies TaskSim model.
1 Machine StowSupplies(Var NumStowers = 1, Var BoxesRemaining = 10) {
2 Var step r = normal (0.5, 0.25);
3 VarRef step = max(0, step r + (NumStowers − 1)∗0.1);
4 Var drop r = uniform (0,1);
5 VarRef drop p = max(0, 0.09 − (NumStowers − 1)∗0.06);
6 VarRef dropOccurred = drop r < drop p;

232

B.2. CommTower Scenario

7

8 State Stowing {
9 Start

10 Arcs => {
11 (Name => ”StowSupplies”,
12 Test => (BoxesRemaining > 0 && !dropOccurred && NumStowers >= 1),
13 Effect => (BoxesRemaining = max(0, BoxesRemaining − step);
14 t g ++;),
15 Target => ”Stowing”),
16 (Name => ”Noop”,
17 Test => (NumStowers < 1),
18 Effect => (t g ++;),
19 Target => ”Stowing”),
20 (Name => ”Drop”,
21 Test => (dropOccurred && NumStowers >= 1),
22 Effect => (BoxesRemaining = ceil(BoxesRemaining);
23 t g ++;),
24 Target => ”Stowing”),
25 (Name => ”Finished”,
26 Test => (BoxesRemaining <= 0 && !dropOccurred && NumStowers >= 1),
27 Effect => (),
28 Target => ”Done”)
29 }
30 }
31 State Done {
32 Stop
33 }
34 };

233

	Contents
	Introduction
	Thesis Statement
	Document Outline
	Live Duration Prediction (Chapter 5)
	Mutable Teams (Chapter 6)
	Live Task Modification (Chapter 7)
	Proactive Replanning (Chapter 8)
	Summary

	Related Work
	Planning, Scheduling, and Execution Systems
	Planners / Schedulers
	Architectures: Integrating Planning and Execution

	Duration Prediction
	Mutable Teams and Live Task Modification
	Multi-robot task allocation
	Swarms
	Role Exchange

	Summary

	Background
	ASPEN Planner
	ASPEN Core
	Approach to Planning, Repair, and Optimization
	Extensions to ASPEN

	CASPER Execution System
	Kernel Density Estimation
	Summary

	Approach
	Proactive Replanning
	Live Duration Prediction
	Mutable Teams: Required and Optional Roles
	Live Task Modification

	Requirements for Proactive Replanning
	Planner
	Executive

	Domain Complexity
	Summary

	Live Duration Prediction
	Overview
	Applicability
	Under-runs
	Over-runs

	Use of Distributions
	Prediction Method
	Kernel Density Estimation
	Weighted Kernel Density Estimation
	Application to Duration Prediction
	Other Approaches

	Planner Integration
	Predicting Resource Usage
	Experimental Results
	Accuracy of Prediction
	Effects of Live Duration Prediction: Maximizing Reward

	Summary

	Mutable Teams
	Overview
	Applicability
	Mutable Teams and the Planner
	Required Planner Capabilities
	Representing Mutable Teams and Roles in ASPEN
	Alternative Representations

	Mutable Teams and the Executive
	Required Executive Capabilities
	Designing Tasks to Utilize Optional Roles
	Designing Tasks to Utilize Mutable Teams

	Duration Prediction with Mutable Teams
	Predicting the Effects of Team Changes
	Reasoning About Engagement and Disengagement Costs

	Experimental Results
	Duration Prediction with Mutable Teams
	Effect of Mutable Teams on Initial Plans

	Summary

	Live Task Modification
	Overview
	Applicability
	Load Balancing
	Arrival Time Adjustment
	Summary

	Task Modification and the Planner
	Required Planner Capabilities
	Representation

	Task Modification and the Executive
	Required Executive Capabilities
	Implementation

	Summary

	Proactive Replanning
	Architecture
	Planner: ASPEN
	Executive
	Simulator: TaskSim and ROBINSON
	Flow of Execution

	Heuristics
	Stochasticity
	Predicates
	Simplifying Assumptions
	Minimize Impact
	Post-Processing

	Transferring Agents
	Experimental Results
	Scenario
	Experimental Design
	Analysis Procedure and Definitions
	Data and Analysis

	Domain Exploration
	Effect of Agent Scarcity
	Effect of Number of Prediction Particles
	Effect of Failure Length

	Conclusions

	Conclusions
	Future Work
	Evaluation on Real-World Hardware in Real Time
	Reducing Repredictions
	Heterogeneous Agents
	Mutable Teams with Durative Integration and Disengagement
	Mutable Teams and Semi-Terminal Failures
	Applicability to Least-Commitment Planners
	Predicting Resource Usage
	Human Interaction and Sliding Autonomy

	Summary

	Bibliography
	Appendices
	Algorithms for Duration Prediction with Mutable Teams
	TaskSim Model Definitions
	Outpost Scenario
	CommTower Scenario

